Comparison of Distance Function in K-Nearest Neighbor Algorithm to Predict Prospective Customers in Term Deposit Subscriptions

Muhammad Tibri Syofyan, N. Amalita, Dodi Vionanda, Dina Fitria
{"title":"Comparison of Distance Function in K-Nearest Neighbor Algorithm to Predict Prospective Customers in Term Deposit Subscriptions","authors":"Muhammad Tibri Syofyan, N. Amalita, Dodi Vionanda, Dina Fitria","doi":"10.24036/ujsds/vol1-iss3/47","DOIUrl":null,"url":null,"abstract":"Data mining is often used to analysis of the big data to obtain new useful information that will be used in the future. One of the best algorithms in data mining is K-Nearest Neighbor (KKN). K-NN classifier is a distance-based classification algorithm. The distance function is a core component in measuring the distance or similarity between the tested data and the training data. Various measure of distance function exist make this a topic of kind literature problems to determining the best distance function for the performance of the K-NN classifier. This study aims to compare which distance function produces the best K-NN performance. The distance function to be compared is the Manhattan distance and Minkowski distance. The application of K-NN classifier using bank dataset about predict prospective customers in Term Deposit Subscriptions. This study show that Minkowski distance on K-NN algorithm achieved the best result compared to Manhattan distance. Minkowski distance with power p = 1.5 produces an accuracy rate of 88.40% when the K value is 7. Thus, performance of K-NN algorithm using Minkowski distance (p=1,5, K=7) is best algorithm in predicting prospective costumers in Term Deposit Subscription","PeriodicalId":220933,"journal":{"name":"UNP Journal of Statistics and Data Science","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UNP Journal of Statistics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24036/ujsds/vol1-iss3/47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data mining is often used to analysis of the big data to obtain new useful information that will be used in the future. One of the best algorithms in data mining is K-Nearest Neighbor (KKN). K-NN classifier is a distance-based classification algorithm. The distance function is a core component in measuring the distance or similarity between the tested data and the training data. Various measure of distance function exist make this a topic of kind literature problems to determining the best distance function for the performance of the K-NN classifier. This study aims to compare which distance function produces the best K-NN performance. The distance function to be compared is the Manhattan distance and Minkowski distance. The application of K-NN classifier using bank dataset about predict prospective customers in Term Deposit Subscriptions. This study show that Minkowski distance on K-NN algorithm achieved the best result compared to Manhattan distance. Minkowski distance with power p = 1.5 produces an accuracy rate of 88.40% when the K value is 7. Thus, performance of K-NN algorithm using Minkowski distance (p=1,5, K=7) is best algorithm in predicting prospective costumers in Term Deposit Subscription
k -最近邻算法中距离函数在定期存款客户预测中的比较
数据挖掘通常用于对大数据进行分析,以获得将来使用的新的有用信息。数据挖掘中最好的算法之一是k -最近邻算法(KKN)。K-NN分类器是一种基于距离的分类算法。距离函数是测量测试数据与训练数据之间的距离或相似度的核心组成部分。距离函数的各种度量使得确定K-NN分类器性能的最佳距离函数成为一类文献问题的主题。本研究旨在比较哪个距离函数产生最好的K-NN性能。要比较的距离函数是曼哈顿距离和闵可夫斯基距离。基于银行数据集的K-NN分类器在定期存款订阅客户预测中的应用。本研究表明,与曼哈顿距离相比,K-NN算法上的Minkowski距离取得了最好的效果。当K值为7时,幂p = 1.5的闵可夫斯基距离的准确率为88.40%。因此,使用Minkowski距离(p=1,5, K=7)的K- nn算法是预测定期存款订阅中潜在客户的最佳算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信