Hybrid Reduction Dimension on Clustering Text of English Hadith Translation

N. Priatna, A. Huda, Q. U. Safitri, W. Darmalaksana
{"title":"Hybrid Reduction Dimension on Clustering Text of English Hadith Translation","authors":"N. Priatna, A. Huda, Q. U. Safitri, W. Darmalaksana","doi":"10.1109/ICWT47785.2019.8978239","DOIUrl":null,"url":null,"abstract":"Clustering results are strongly influenced by the selected technique and data dimensions. Large data dimensions become the main problem that must be considered. Therefore, a dimensional reduction is needed to select sub-feature that provides important information. One of the dimensions reduction methods is the hybrid method. The hybrid method combines the method of feature selection and feature extraction to select informative sub-feature. Furthermore, the simplest clustering technique is the k-means algorithm, which divides n data into k cluster based on the centroid. This study carried out clustering using the k-means algorithm after reducing dimensions on 892 English translation hadith documents. The clustering results are validated using the silhouette coefficient and Davies Bouldin index (DBI). Experimental results show that dimensional reduction can improve the cluster quality.","PeriodicalId":220618,"journal":{"name":"2019 IEEE 5th International Conference on Wireless and Telematics (ICWT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Wireless and Telematics (ICWT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWT47785.2019.8978239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering results are strongly influenced by the selected technique and data dimensions. Large data dimensions become the main problem that must be considered. Therefore, a dimensional reduction is needed to select sub-feature that provides important information. One of the dimensions reduction methods is the hybrid method. The hybrid method combines the method of feature selection and feature extraction to select informative sub-feature. Furthermore, the simplest clustering technique is the k-means algorithm, which divides n data into k cluster based on the centroid. This study carried out clustering using the k-means algorithm after reducing dimensions on 892 English translation hadith documents. The clustering results are validated using the silhouette coefficient and Davies Bouldin index (DBI). Experimental results show that dimensional reduction can improve the cluster quality.
英语圣训翻译聚类文本的混合降维
聚类结果受到所选择的技术和数据维度的强烈影响。大数据维度成为必须考虑的主要问题。因此,需要减少维度来选择提供重要信息的子特征。其中一种降维方法是混合降维法。混合方法将特征选择和特征提取相结合,选择信息丰富的子特征。此外,最简单的聚类技术是k-means算法,它根据质心将n个数据分成k个聚类。本研究对892篇英文翻译圣训文档进行降维后,采用k-means算法进行聚类。利用剪影系数和Davies Bouldin指数(DBI)对聚类结果进行验证。实验结果表明,降维可以提高聚类质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信