Outlier Detection for Generative Models with Performance Guarantees

Jin-wu Gao, Jirong Yi, Weiyu Xu
{"title":"Outlier Detection for Generative Models with Performance Guarantees","authors":"Jin-wu Gao, Jirong Yi, Weiyu Xu","doi":"10.1109/CISS56502.2023.10089758","DOIUrl":null,"url":null,"abstract":"We consider the problem of recovering signals using deep generative models, from measurements contaminated with sparse outliers. We propose an optimization based outlier detection approach for reconstructing the ground truth signals modeled by generative models under sparse outliers. We further establish theoretical recovery guarantees for our proposed reconstruction approach under outliers. Our results are applicable to a broad class of generative neural networks with an arbitrary number of layers. The experimental results show that the signals can be successfully reconstructed under outliers using our approach.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of recovering signals using deep generative models, from measurements contaminated with sparse outliers. We propose an optimization based outlier detection approach for reconstructing the ground truth signals modeled by generative models under sparse outliers. We further establish theoretical recovery guarantees for our proposed reconstruction approach under outliers. Our results are applicable to a broad class of generative neural networks with an arbitrary number of layers. The experimental results show that the signals can be successfully reconstructed under outliers using our approach.
性能保证生成模型的离群点检测
我们考虑使用深度生成模型从稀疏异常值污染的测量中恢复信号的问题。本文提出了一种基于优化的离群点检测方法,用于稀疏离群点下生成模型模拟的地面真值信号的重建。我们进一步为我们提出的异常值下的重建方法建立了理论上的恢复保证。我们的结果适用于具有任意层数的广泛类型的生成神经网络。实验结果表明,该方法可以在异常值下成功地重建信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信