POSTER: A Semi-asynchronous Federated Intrusion Detection Framework for Power Systems

Muhammad Akbar Husnoo, A. Anwar, H. Reda, N. Hosseinzadeh
{"title":"POSTER: A Semi-asynchronous Federated Intrusion Detection Framework for Power Systems","authors":"Muhammad Akbar Husnoo, A. Anwar, H. Reda, N. Hosseinzadeh","doi":"10.1145/3579856.3592824","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL)-based Intrusion Detection Systems (IDSs) have recently surfaced as viable privacy-preserving solution to decentralized grid zones. However, lack of consideration of communication delays and straggler nodes in conventional synchronous FL hinders their applications within the real-world. To level the playing field, we propose a novel semi-asynchronous FL solution on basis of a preset-cut-off time and a buffer system to mitigate the adverse effects of communication latency and stragglers. Furthermore, we leverage the use of a Deep Auto-encoder model for effective cyberattack detection. Experimental evaluations of our proposed framework on industrial control datasets validate superior attack detection while decreasing the adverse effects of communication latency and straggler nodes. Lastly, we notice a 30% improvement in the computation time in the presence of communication latency/straggler nodes, thus validating the robustness of our proposed method.","PeriodicalId":156082,"journal":{"name":"Proceedings of the 2023 ACM Asia Conference on Computer and Communications Security","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 ACM Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579856.3592824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Federated Learning (FL)-based Intrusion Detection Systems (IDSs) have recently surfaced as viable privacy-preserving solution to decentralized grid zones. However, lack of consideration of communication delays and straggler nodes in conventional synchronous FL hinders their applications within the real-world. To level the playing field, we propose a novel semi-asynchronous FL solution on basis of a preset-cut-off time and a buffer system to mitigate the adverse effects of communication latency and stragglers. Furthermore, we leverage the use of a Deep Auto-encoder model for effective cyberattack detection. Experimental evaluations of our proposed framework on industrial control datasets validate superior attack detection while decreasing the adverse effects of communication latency and straggler nodes. Lastly, we notice a 30% improvement in the computation time in the presence of communication latency/straggler nodes, thus validating the robustness of our proposed method.
面向电力系统的半异步联邦入侵检测框架
基于联邦学习(FL)的入侵检测系统(ids)最近成为分散网格区域的可行隐私保护解决方案。然而,在传统的同步FL中,缺乏对通信延迟和离散节点的考虑阻碍了它们在现实世界中的应用。为了平衡竞争环境,我们提出了一种基于预设截止时间和缓冲系统的新型半异步FL解决方案,以减轻通信延迟和离散者的不利影响。此外,我们利用深度自动编码器模型进行有效的网络攻击检测。我们提出的框架在工业控制数据集上的实验评估验证了优越的攻击检测,同时减少了通信延迟和离散节点的不利影响。最后,我们注意到在存在通信延迟/离散节点的情况下,计算时间提高了30%,从而验证了我们提出的方法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信