{"title":"SYMMETRIC FINITE REPRESENTABILITY OF ℓp IN ORLICZ SPACES","authors":"S. V. Astashkin","doi":"10.18287/2541-7525-2020-26-4-15-24","DOIUrl":null,"url":null,"abstract":"It is well known that a Banach space need not contain any subspace isomorphic to a space ℓp (1 6 p ) or c0 (it was shown by Tsirelson in 1974). At the same time, by the famous Krivines theorem, every Banach space X always contains at least one of these spaces locally, i.e., there exist finite-dimensional subspaces of X of arbitrarily large dimension n which are isomorphic (uniformly) to ℓnp for some 1 6 p or cn0 . In thiscase one says that ℓp (resp. c0) is finitely representable in X. The main purpose of this paper is to give a characterization (with a complete proof) of the set of p such that ℓp is symmetrically finitely representable in a separable Orlicz space.","PeriodicalId":427884,"journal":{"name":"Vestnik of Samara University. Natural Science Series","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik of Samara University. Natural Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2541-7525-2020-26-4-15-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that a Banach space need not contain any subspace isomorphic to a space ℓp (1 6 p ) or c0 (it was shown by Tsirelson in 1974). At the same time, by the famous Krivines theorem, every Banach space X always contains at least one of these spaces locally, i.e., there exist finite-dimensional subspaces of X of arbitrarily large dimension n which are isomorphic (uniformly) to ℓnp for some 1 6 p or cn0 . In thiscase one says that ℓp (resp. c0) is finitely representable in X. The main purpose of this paper is to give a characterization (with a complete proof) of the set of p such that ℓp is symmetrically finitely representable in a separable Orlicz space.