{"title":"Modeling & simulation to study the performance of hybrid free space optical/rf military communication networks","authors":"R. Raghavan, A. Kam, R. Y. Mannepalli","doi":"10.1109/MILCOM.2008.4753149","DOIUrl":null,"url":null,"abstract":"Data transmission using fiber optics offers significant improvements in network throughput rates. Although, optical fiber can transfer data at the rate of 1.6 Terabit/s per fiber - using Dense Wavelength Division Multiplexing (DWDM) technologies - the need for pre-laid infrastructure (optical fiber, network elements and significant network management) makes it more suitable for intercontinental backbones. Although Free Space Optical Communications (FSO) provides significant advantages for communication at the extremities of the network, the requirements of cloud-free line-of-sight (CFLOS) and perfect weather conditions prevent FSO alone from being a reliable military communications system. Hence, a hybrid system with FSO as the primary choice and RF as a fallback option has been proposed. The paper contains problem definition, details of the modeling and simulation (M&S) design and implementation, testing, verification and results of simple test cases.","PeriodicalId":434891,"journal":{"name":"MILCOM 2008 - 2008 IEEE Military Communications Conference","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2008 - 2008 IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2008.4753149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Data transmission using fiber optics offers significant improvements in network throughput rates. Although, optical fiber can transfer data at the rate of 1.6 Terabit/s per fiber - using Dense Wavelength Division Multiplexing (DWDM) technologies - the need for pre-laid infrastructure (optical fiber, network elements and significant network management) makes it more suitable for intercontinental backbones. Although Free Space Optical Communications (FSO) provides significant advantages for communication at the extremities of the network, the requirements of cloud-free line-of-sight (CFLOS) and perfect weather conditions prevent FSO alone from being a reliable military communications system. Hence, a hybrid system with FSO as the primary choice and RF as a fallback option has been proposed. The paper contains problem definition, details of the modeling and simulation (M&S) design and implementation, testing, verification and results of simple test cases.