{"title":"Memristor models for chaotic neural circuits","authors":"F. Corinto, A. Ascoli, M. Gilli","doi":"10.1109/IJCNN.2012.6252777","DOIUrl":null,"url":null,"abstract":"Chaotic neural networks are able to reproduce chaotic dynamics observable in the brain of various living beings. As a result, study of the dynamical properties of such networks may pave the way towards a better understanding of the memory rules of the brain. In this paper a simple neural circuit employing a theoretical memristive synapse with symmetric charge-flux nonlinearity is found to behave chaotically. After presentation of a novel boundary-condition based model for real memristor nano-structures, conditions under which a suitable arrangement of such nano-structures is dynamically equivalent to the theoretical memristor are derived and validated.","PeriodicalId":287844,"journal":{"name":"The 2012 International Joint Conference on Neural Networks (IJCNN)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2012 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2012.6252777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Chaotic neural networks are able to reproduce chaotic dynamics observable in the brain of various living beings. As a result, study of the dynamical properties of such networks may pave the way towards a better understanding of the memory rules of the brain. In this paper a simple neural circuit employing a theoretical memristive synapse with symmetric charge-flux nonlinearity is found to behave chaotically. After presentation of a novel boundary-condition based model for real memristor nano-structures, conditions under which a suitable arrangement of such nano-structures is dynamically equivalent to the theoretical memristor are derived and validated.