Optimizing Neural Network Embeddings Using a Pair-Wise Loss for Text-Independent Speaker Verification

Hira Dhamyal, Tianyan Zhou, B. Raj, Rita Singh
{"title":"Optimizing Neural Network Embeddings Using a Pair-Wise Loss for Text-Independent Speaker Verification","authors":"Hira Dhamyal, Tianyan Zhou, B. Raj, Rita Singh","doi":"10.1109/ASRU46091.2019.9003794","DOIUrl":null,"url":null,"abstract":"This paper proposes a new loss function called the “quartet” loss for the better optimization of the neural networks for matching tasks. For such tasks, where neural network embeddings are the key component, the optimization of the network for better embeddings is critical. The embeddings are required to be class discriminative, resulting in minimal inter-class variation and maximal intra-class variation even for unseen classes for better generalization of the network. The quartet loss explicitly computes the distance metric between pairs of inputs and increases the gap between the similarity score distributions between the same class pairs and the different class pairs. We evaluate on the speaker verification task and demonstrate the performance of the loss on our proposed neural network.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes a new loss function called the “quartet” loss for the better optimization of the neural networks for matching tasks. For such tasks, where neural network embeddings are the key component, the optimization of the network for better embeddings is critical. The embeddings are required to be class discriminative, resulting in minimal inter-class variation and maximal intra-class variation even for unseen classes for better generalization of the network. The quartet loss explicitly computes the distance metric between pairs of inputs and increases the gap between the similarity score distributions between the same class pairs and the different class pairs. We evaluate on the speaker verification task and demonstrate the performance of the loss on our proposed neural network.
基于对损失的文本无关说话人验证神经网络嵌入优化
为了更好地优化神经网络的匹配任务,本文提出了一种新的损失函数,称为“四重奏”损失。对于这样的任务,神经网络嵌入是关键组成部分,优化网络以获得更好的嵌入是至关重要的。为了更好地泛化网络,要求嵌入具有类判别性,使类间变化最小,类内变化最大,甚至对于未见过的类也是如此。四重奏损失显式地计算输入对之间的距离度量,并增加相同类对与不同类对之间的相似度评分分布之间的差距。我们对说话人验证任务进行了评估,并在我们提出的神经网络上展示了损失的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信