A Python-Based MPI Framework for Exploring an Adaptive Fuzzy-Agent Approach to Simulating Large-Scale Non-Cooperative Games

E. Millman, C. Budakoglu, S. Neville
{"title":"A Python-Based MPI Framework for Exploring an Adaptive Fuzzy-Agent Approach to Simulating Large-Scale Non-Cooperative Games","authors":"E. Millman, C. Budakoglu, S. Neville","doi":"10.1109/CCECE.2007.348","DOIUrl":null,"url":null,"abstract":"In this article, we describe how to construct a large scale simulation system using the standard message passing interface (MPI) framework which can effectively explore the simulated players' strategy search spaces (i.e., to identify \"good\" strategies within particular \"games\" out of large sets of potential strategies) using genetic algorithms. We demonstrate how to create \"intelligent\" players who are capable of adapting their behaviors as the game evolves, given the problematic nature of identifying \"good\" strategies a priori using fuzzy logic. We prove these two concepts by building a scalable predator and prey simulation framework.","PeriodicalId":183910,"journal":{"name":"2007 Canadian Conference on Electrical and Computer Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2007.348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we describe how to construct a large scale simulation system using the standard message passing interface (MPI) framework which can effectively explore the simulated players' strategy search spaces (i.e., to identify "good" strategies within particular "games" out of large sets of potential strategies) using genetic algorithms. We demonstrate how to create "intelligent" players who are capable of adapting their behaviors as the game evolves, given the problematic nature of identifying "good" strategies a priori using fuzzy logic. We prove these two concepts by building a scalable predator and prey simulation framework.
基于python的MPI框架探索自适应模糊智能体模拟大规模非合作博弈的方法
在本文中,我们描述了如何使用标准消息传递接口(MPI)框架构建一个大规模的模拟系统,该框架可以有效地探索模拟玩家的策略搜索空间(即,从大量潜在策略中识别特定“游戏”中的“好”策略)使用遗传算法。我们演示了如何创造“智能”玩家,他们能够随着游戏的发展而调整自己的行为,考虑到使用模糊逻辑先验地识别“好”策略的问题本质。我们通过构建一个可扩展的捕食者和猎物模拟框架来证明这两个概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信