J. Bringer, H. Chabanne, M. Favre, Alain Patey, T. Schneider, Michael Zohner
{"title":"GSHADE: faster privacy-preserving distance computation and biometric identification","authors":"J. Bringer, H. Chabanne, M. Favre, Alain Patey, T. Schneider, Michael Zohner","doi":"10.1145/2600918.2600922","DOIUrl":null,"url":null,"abstract":"At WAHC'13, Bringer et al. introduced a protocol called SHADE for secure and efficient Hamming distance computation using oblivious transfer only. In this paper, we introduce a generalization of the SHADE protocol, called GSHADE, that enables privacy-preserving computation of several distance metrics, including (normalized) Hamming distance, Euclidean distance, Mahalanobis distance, and scalar product. GSHADE can be used to efficiently compute one-to-many biometric identification for several traits (iris, face, fingerprint) and benefits from recent optimizations of oblivious transfer extensions. GSHADE allows identification against a database of 1000 Eigenfaces in 1.28 seconds and against a database of 10000 IrisCodes in 17.2 seconds which is more than 10 times faster than previous works.","PeriodicalId":243756,"journal":{"name":"Information Hiding and Multimedia Security Workshop","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Hiding and Multimedia Security Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2600918.2600922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83
Abstract
At WAHC'13, Bringer et al. introduced a protocol called SHADE for secure and efficient Hamming distance computation using oblivious transfer only. In this paper, we introduce a generalization of the SHADE protocol, called GSHADE, that enables privacy-preserving computation of several distance metrics, including (normalized) Hamming distance, Euclidean distance, Mahalanobis distance, and scalar product. GSHADE can be used to efficiently compute one-to-many biometric identification for several traits (iris, face, fingerprint) and benefits from recent optimizations of oblivious transfer extensions. GSHADE allows identification against a database of 1000 Eigenfaces in 1.28 seconds and against a database of 10000 IrisCodes in 17.2 seconds which is more than 10 times faster than previous works.