A 12.5mg mm-Scale Inductively-Powered Light-Directivity-Enhanced Highly-Linear Bidirectional Optogenetic Neuro-Stimulator

Tayebeh Yousefi, Mansour Taghadosi, Alireza Dabbaghian, Ryan Siu, Gerd Grau, Georg Zoidl, Hossein Kassiri
{"title":"A 12.5mg mm-Scale Inductively-Powered Light-Directivity-Enhanced Highly-Linear Bidirectional Optogenetic Neuro-Stimulator","authors":"Tayebeh Yousefi, Mansour Taghadosi, Alireza Dabbaghian, Ryan Siu, Gerd Grau, Georg Zoidl, Hossein Kassiri","doi":"10.1109/CICC48029.2020.9075932","DOIUrl":null,"url":null,"abstract":"The design, development, and experimental validation of a mm-scale self-contained bidirectional optogenetic stimulator are presented. A novel current-mode LED driving circuit architecture is employed that allows for fully-linear control of optical stimulation up to ILED?10mA, with the smallest reported 200mV headroom, significantly boosting the electrical-to-optical energy conversion efficiency. The system's energy efficiency is further improved by inkjet printing of custom-designed optical µlenses on top of the device to enhance the generated light directivity. Our results show a 30.46× irradiance (optical power per area) improvement for the same electrical power consumption. In addition to the two stimulation channels, the SoC integrates two recording channels for LFP recording and digitization, and is powered through an on-chip coil with PTE?2.24%. Full experimental SoC electrical and optical characterization and in vitro measurement results are reported.","PeriodicalId":409525,"journal":{"name":"2020 IEEE Custom Integrated Circuits Conference (CICC)","volume":"65 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC48029.2020.9075932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The design, development, and experimental validation of a mm-scale self-contained bidirectional optogenetic stimulator are presented. A novel current-mode LED driving circuit architecture is employed that allows for fully-linear control of optical stimulation up to ILED?10mA, with the smallest reported 200mV headroom, significantly boosting the electrical-to-optical energy conversion efficiency. The system's energy efficiency is further improved by inkjet printing of custom-designed optical µlenses on top of the device to enhance the generated light directivity. Our results show a 30.46× irradiance (optical power per area) improvement for the same electrical power consumption. In addition to the two stimulation channels, the SoC integrates two recording channels for LFP recording and digitization, and is powered through an on-chip coil with PTE?2.24%. Full experimental SoC electrical and optical characterization and in vitro measurement results are reported.
一种12.5mg mm级感应供电光指向性增强高线性双向光遗传神经刺激器
介绍了一种毫米级自包含双向光遗传刺激器的设计、开发和实验验证。采用了一种新颖的电流模式LED驱动电路结构,可实现高达il ?10mA,最小的净空为200mV,显著提高了电光能量转换效率。通过在设备顶部喷墨打印定制设计的光学微透镜来增强产生的光指向性,进一步提高了系统的能源效率。我们的结果表明,在相同的电力消耗下,辐照度(每面积光功率)提高了30.46倍。除了两个刺激通道外,SoC还集成了两个记录通道,用于LFP记录和数字化,并通过PTE?2.24%的片上线圈供电。完整的实验SoC电学和光学表征和体外测量结果报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信