Architecture of Reconfigurable-Logic Cell Array with Atom Switch: Cluster Size & Routing Fabrics (Abstract Only)

X. Bai, Y. Tsuji, A. Morioka, M. Miyamura, T. Sakamoto, M. Tada, N. Banno, K. Okamoto, N. Iguchi, H. Hada
{"title":"Architecture of Reconfigurable-Logic Cell Array with Atom Switch: Cluster Size & Routing Fabrics (Abstract Only)","authors":"X. Bai, Y. Tsuji, A. Morioka, M. Miyamura, T. Sakamoto, M. Tada, N. Banno, K. Okamoto, N. Iguchi, H. Hada","doi":"10.1145/2684746.2689122","DOIUrl":null,"url":null,"abstract":"Emerging nonvolatile memories (NVMs) have a potential to overcome the issues in the conventional static random-access memory (SRAM) based reconfigurable logic cell arrays (RLCAs). Replacing a CMOS switch element composed of a SRAM and a pass transistor by a NVM reduces chip size. And non-volatility reduces the stand-by power. More importantly, the compactness of NVM allows fine-grain logic cells (small cluster size), which advantageously enables a highly efficient cell usage, resulting in compact circuit for applications. In this paper, we investigate the fine-grain cell architecture using atom switch which is one of the NVMs. We evaluate the effect of the cluster size and the segment length on the atom-switch-based RLCA to confirm the optimal point considering area-delay product. Cluster size is optimized to be 4, which is smaller than that in the conventional SRAM- and multiplexer-based RLCA. This optimization is originated from the fact that the inter-delay among clusters is only twice of the intra-delay in cluster for atom-switch-based RLCA with routing block formed by crossbar switches because of very small capacitance and resistance of atom switches. On the other hand, the segment length is optimized to be 4, which is the same as that in the conventional SRAM- and multiplexer-based RLCA.","PeriodicalId":388546,"journal":{"name":"Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2684746.2689122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging nonvolatile memories (NVMs) have a potential to overcome the issues in the conventional static random-access memory (SRAM) based reconfigurable logic cell arrays (RLCAs). Replacing a CMOS switch element composed of a SRAM and a pass transistor by a NVM reduces chip size. And non-volatility reduces the stand-by power. More importantly, the compactness of NVM allows fine-grain logic cells (small cluster size), which advantageously enables a highly efficient cell usage, resulting in compact circuit for applications. In this paper, we investigate the fine-grain cell architecture using atom switch which is one of the NVMs. We evaluate the effect of the cluster size and the segment length on the atom-switch-based RLCA to confirm the optimal point considering area-delay product. Cluster size is optimized to be 4, which is smaller than that in the conventional SRAM- and multiplexer-based RLCA. This optimization is originated from the fact that the inter-delay among clusters is only twice of the intra-delay in cluster for atom-switch-based RLCA with routing block formed by crossbar switches because of very small capacitance and resistance of atom switches. On the other hand, the segment length is optimized to be 4, which is the same as that in the conventional SRAM- and multiplexer-based RLCA.
带原子开关的可重构逻辑单元阵列结构:簇大小和路由结构(仅摘要)
新兴的非易失性存储器(nvm)有可能克服基于可重构逻辑单元阵列(rlca)的传统静态随机存取存储器(SRAM)的问题。用NVM取代由SRAM和通管组成的CMOS开关元件可减小芯片尺寸。非挥发性降低了待机功率。更重要的是,NVM的紧凑性允许细粒度逻辑单元(小簇大小),这有利于实现高效的单元使用,从而实现应用程序的紧凑电路。在本文中,我们研究了使用原子开关(nvm之一)的细粒度细胞结构。我们评估了簇大小和段长度对基于原子开关的RLCA的影响,以确定考虑面积延迟积的最优点。簇大小优化为4,比传统的基于SRAM和多路复用器的RLCA小。由于原子开关的电容和电阻非常小,采用交叉开关形成路由块的基于原子开关的RLCA,簇间延迟仅为簇内延迟的两倍。另一方面,段长度被优化为4,这与传统的基于SRAM和多路复用器的RLCA相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信