{"title":"Semi-partitioning under a Blocking-Aware Task Allocation","authors":"Sara Afshar, M. Behnam, T. Nolte","doi":"10.1109/RTSS.2015.48","DOIUrl":null,"url":null,"abstract":"Semi-partitioned scheduling is a resource efficient scheduling approach compared to the conventional multiprocessor scheduling approaches in terms of system utilization and migration overhead. Semi-partitioned scheduling can better utilize processor bandwidth compared to the partitioned scheduling while introducing less overhead compared to the global scheduling. Various techniques have been proposed to schedule tasks in a semi-partitioned environment, however, they have used blocking-agnostic allocation mechanisms in presence of resource sharing protocols. Since, the allocation mechanism can highly affect the system schedulability, in this paper we provide a blocking-aware allocation mechanism for semi-partitioned scheduling framework under a suspension-based resource sharing protocol. We have applied new heuristics for sorting the tasks in the algorithm that shows improvements upon system schedulability. Finally, we present our preliminary results.","PeriodicalId":239882,"journal":{"name":"2015 IEEE Real-Time Systems Symposium","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2015.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Semi-partitioned scheduling is a resource efficient scheduling approach compared to the conventional multiprocessor scheduling approaches in terms of system utilization and migration overhead. Semi-partitioned scheduling can better utilize processor bandwidth compared to the partitioned scheduling while introducing less overhead compared to the global scheduling. Various techniques have been proposed to schedule tasks in a semi-partitioned environment, however, they have used blocking-agnostic allocation mechanisms in presence of resource sharing protocols. Since, the allocation mechanism can highly affect the system schedulability, in this paper we provide a blocking-aware allocation mechanism for semi-partitioned scheduling framework under a suspension-based resource sharing protocol. We have applied new heuristics for sorting the tasks in the algorithm that shows improvements upon system schedulability. Finally, we present our preliminary results.