Approximations and Bounds for (n, k) Fork-Join Queues: A Linear Transformation Approach

Huajin Wang, Jianhui Li, Zhihong Shen, Yuanchun Zhou
{"title":"Approximations and Bounds for (n, k) Fork-Join Queues: A Linear Transformation Approach","authors":"Huajin Wang, Jianhui Li, Zhihong Shen, Yuanchun Zhou","doi":"10.1109/CCGRID.2018.00069","DOIUrl":null,"url":null,"abstract":"(n, k) fork-join queues are prevalent in popular distributed systems, erasure coding based cloud storages, and modern network protocols like multipath routing, estimating the sojourn time of such queues is thus critical for the performance measurement and resource plan of computer clusters. However, the estimating keeps to be a well-known open challenge for years, and only rough bounds for a limited range of load factors have been given. This paper developed a closed-form linear transformation technique for jointly-identical random variables: An order statistic can be represented by a linear combination of maxima. This brand-new technique is then used to transform the sojourn time of non-purging (n, k) fork-join queues into a linear combination of the sojourn times of basic (k, k), (k+1, k+1),..., (n, n) fork-join queues. Consequently, existing approximations for basic fork-join queues can be bridged to the approximations for non-purging (n, k) fork-join queues. The uncovered approximations are then used to improve the upper bounds for purging (n, k) fork-join queues. Simulation experiments show that this linear transformation approach is practiced well for moderate n and relatively large k.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

(n, k) fork-join queues are prevalent in popular distributed systems, erasure coding based cloud storages, and modern network protocols like multipath routing, estimating the sojourn time of such queues is thus critical for the performance measurement and resource plan of computer clusters. However, the estimating keeps to be a well-known open challenge for years, and only rough bounds for a limited range of load factors have been given. This paper developed a closed-form linear transformation technique for jointly-identical random variables: An order statistic can be represented by a linear combination of maxima. This brand-new technique is then used to transform the sojourn time of non-purging (n, k) fork-join queues into a linear combination of the sojourn times of basic (k, k), (k+1, k+1),..., (n, n) fork-join queues. Consequently, existing approximations for basic fork-join queues can be bridged to the approximations for non-purging (n, k) fork-join queues. The uncovered approximations are then used to improve the upper bounds for purging (n, k) fork-join queues. Simulation experiments show that this linear transformation approach is practiced well for moderate n and relatively large k.
(n, k)叉联接队列的逼近与界:一种线性变换方法
(n, k) fork-join队列在流行的分布式系统、基于擦除编码的云存储和现代网络协议(如多路径路由)中非常普遍,因此,估计此类队列的停留时间对于计算机集群的性能测量和资源计划至关重要。然而,多年来,估计一直是一个众所周知的公开挑战,并且只给出了有限范围的负载因子的粗略界限。本文提出了一种合同随机变量的闭型线性变换技术:一个序统计量可以用极大值的线性组合来表示。然后使用这种全新的技术将非清除(n, k)叉连接队列的逗留时间转换为基本(k, k), (k+1, k+1),…的逗留时间的线性组合。, (n, n)个fork-join队列。因此,基本fork-join队列的现有近似可以桥接到非清除(n, k) fork-join队列的近似。然后使用未覆盖的近似来改进清除(n, k)个fork-join队列的上界。仿真实验表明,对于中等的n和较大的k,这种线性变换方法可以很好地实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信