ARGA

Daniel Peroni, M. Imani, Hamid Nejatollahi, N. Dutt, Tajana Rosing
{"title":"ARGA","authors":"Daniel Peroni, M. Imani, Hamid Nejatollahi, N. Dutt, Tajana Rosing","doi":"10.1145/3316781.3317776","DOIUrl":null,"url":null,"abstract":"Many data-driven applications including computer vision, speech recognition, and medical diagnostics show tolerance to error during computation. These applications are often accelerated on GPUs, but high computational costs limit performance and increase energy usage. In this paper, we present ARGA, an approximate computing technique capable of accelerating GPGPU applications. ARGA provides an approximate lookup table to GPGPU cores to avoid recomputing instructions with identical or similar values. We propose multi-table parallel lookupwhich enables computational reuse to significantly speed-up GPGPU computation by checking incoming instructions in parallel. The inputs of each operation are searched for in a lookup table. Matches resulting in an exact or low error are removed from the floating point pipeline and used directly as output. Matches producing highly inaccurate results are computed on exact hardware to minimize application error. We simulate our design by placing ARGA within each core of an Nvidia Kepler Architecture Titan and an AMD Southern Island 7970. We show our design improves performance throughput by up to $2.7 \\times$ and improves EDP by $5.3 \\times$ for 6 GPGPU applications while maintaining less than 5% output error. We also show ARGA accelerates inference of a LeNet NN by $2.1 \\times$ and improves EDP by $3.7 \\times$ without significantly impacting classification accuracy. CCS CONCEPTS •Computer systems organization $\\rightarrow$ Multicore architectures; •Computing methodologies $\\rightarrow$ Machine learning approaches.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Many data-driven applications including computer vision, speech recognition, and medical diagnostics show tolerance to error during computation. These applications are often accelerated on GPUs, but high computational costs limit performance and increase energy usage. In this paper, we present ARGA, an approximate computing technique capable of accelerating GPGPU applications. ARGA provides an approximate lookup table to GPGPU cores to avoid recomputing instructions with identical or similar values. We propose multi-table parallel lookupwhich enables computational reuse to significantly speed-up GPGPU computation by checking incoming instructions in parallel. The inputs of each operation are searched for in a lookup table. Matches resulting in an exact or low error are removed from the floating point pipeline and used directly as output. Matches producing highly inaccurate results are computed on exact hardware to minimize application error. We simulate our design by placing ARGA within each core of an Nvidia Kepler Architecture Titan and an AMD Southern Island 7970. We show our design improves performance throughput by up to $2.7 \times$ and improves EDP by $5.3 \times$ for 6 GPGPU applications while maintaining less than 5% output error. We also show ARGA accelerates inference of a LeNet NN by $2.1 \times$ and improves EDP by $3.7 \times$ without significantly impacting classification accuracy. CCS CONCEPTS •Computer systems organization $\rightarrow$ Multicore architectures; •Computing methodologies $\rightarrow$ Machine learning approaches.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信