Hierarchical Attention Learning for Multimodal Classification

Xin Zou, Chang Tang, Wei Zhang, Kun Sun, Liangxiao Jiang
{"title":"Hierarchical Attention Learning for Multimodal Classification","authors":"Xin Zou, Chang Tang, Wei Zhang, Kun Sun, Liangxiao Jiang","doi":"10.1109/ICME55011.2023.00165","DOIUrl":null,"url":null,"abstract":"Multimodal learning aims to integrate complementary information from different modalities for more reliable decisions. However, existing multimodal classification methods simply integrate the learned local features, which ignore the underlying structure of each modality and the higher-order correlation across modalities. In this paper, we propose a novel Hierarchical Attention Learning Network (HALNet) for multimodal classification. Specifically, HALNet has three merits: 1) A hierarchical feature fusion module is proposed to learn multilevel features, aggregating multi-level features for a global feature representation with the attention mechanism and progressive fusion tactics. 2) A cross-modal higher-order fusion module is introduced to capture the prospective cross-modal correlations at label space. 3) A dual prediction pattern is designed to generate credible decisions. Extensive experiments on three real-world multimodal datasets demonstrate that HALNet achieves competitive performance compared to the state-of-the-art.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal learning aims to integrate complementary information from different modalities for more reliable decisions. However, existing multimodal classification methods simply integrate the learned local features, which ignore the underlying structure of each modality and the higher-order correlation across modalities. In this paper, we propose a novel Hierarchical Attention Learning Network (HALNet) for multimodal classification. Specifically, HALNet has three merits: 1) A hierarchical feature fusion module is proposed to learn multilevel features, aggregating multi-level features for a global feature representation with the attention mechanism and progressive fusion tactics. 2) A cross-modal higher-order fusion module is introduced to capture the prospective cross-modal correlations at label space. 3) A dual prediction pattern is designed to generate credible decisions. Extensive experiments on three real-world multimodal datasets demonstrate that HALNet achieves competitive performance compared to the state-of-the-art.
多模态分类的层次注意学习
多模态学习旨在整合来自不同模态的互补信息,以获得更可靠的决策。然而,现有的多模态分类方法只是简单地整合学习到的局部特征,而忽略了每个模态的底层结构和模态之间的高阶相关性。在本文中,我们提出了一种新的分层注意学习网络(HALNet)用于多模态分类。具体来说,HALNet有三个优点:1)提出了一种分层特征融合模块来学习多层特征,利用注意机制和渐进融合策略将多层特征聚合成一个全局特征表示。2)引入跨模态高阶融合模块来捕获标签空间的预期跨模态相关性。3)设计双重预测模式以生成可信的决策。在三个真实世界的多模态数据集上进行的广泛实验表明,HALNet与最先进的技术相比实现了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信