{"title":"Design and implementation of DSP and FPGA-based robust visual servoing control of an inverted pendulum","authors":"Y. Tu, Ming-Tzu Ho","doi":"10.1109/CCA.2010.5611335","DOIUrl":null,"url":null,"abstract":"This paper presents the design and implementation of robust real-time visual servoing control with an FPGA-based image co-processor for a rotary inverted pendulum. The position of the pendulum is measured with a machine vision system whose image processing algorithms are pipelined and implemented on a field programmable gate array (FPGA) device to meet real-time constraints. To enforce robustness to model uncertainty, and to attenuate disturbance and sensor noise, the design of the stabilizing controller is formulated as a problem of the mixed H2/H∞ control, which is then solved using the linear matrix inequality (LMI) approach. The designed control law is implemented on a digital signal processor (DSP). The effectiveness of the controller and the FPGA-based image co-processor is verified through experimental studies. The experimental results show that the designed system is able to robustly control an inverted pendulum in real-time.","PeriodicalId":284271,"journal":{"name":"2010 IEEE International Conference on Control Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Control Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2010.5611335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents the design and implementation of robust real-time visual servoing control with an FPGA-based image co-processor for a rotary inverted pendulum. The position of the pendulum is measured with a machine vision system whose image processing algorithms are pipelined and implemented on a field programmable gate array (FPGA) device to meet real-time constraints. To enforce robustness to model uncertainty, and to attenuate disturbance and sensor noise, the design of the stabilizing controller is formulated as a problem of the mixed H2/H∞ control, which is then solved using the linear matrix inequality (LMI) approach. The designed control law is implemented on a digital signal processor (DSP). The effectiveness of the controller and the FPGA-based image co-processor is verified through experimental studies. The experimental results show that the designed system is able to robustly control an inverted pendulum in real-time.