Surrogate-Assisted Multi-objective Genetic Fuzzy Associative Classification by Multiple Granularity Measures

A. K. Behera, Satchidananda Dehuri, Ashish Ghosh
{"title":"Surrogate-Assisted Multi-objective Genetic Fuzzy Associative Classification by Multiple Granularity Measures","authors":"A. K. Behera, Satchidananda Dehuri, Ashish Ghosh","doi":"10.1109/ICONAT57137.2023.10080059","DOIUrl":null,"url":null,"abstract":"This paper presents a new surrogate-assisted multi-objective genetic fuzzy associative classification model by learning multiple granularities. The specific method is the hybridization of multi-objective genetic algorithms (MOGAs), radial basis function neural networks (RBFNs), and rough set. We show that our approach requires only a few numbers of fitness evaluations compared to the methods proposed in [34] without compromising to maintain an average classification ability in almost all the datasets considered in this work for evaluation of the model.","PeriodicalId":250587,"journal":{"name":"2023 International Conference for Advancement in Technology (ICONAT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference for Advancement in Technology (ICONAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONAT57137.2023.10080059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new surrogate-assisted multi-objective genetic fuzzy associative classification model by learning multiple granularities. The specific method is the hybridization of multi-objective genetic algorithms (MOGAs), radial basis function neural networks (RBFNs), and rough set. We show that our approach requires only a few numbers of fitness evaluations compared to the methods proposed in [34] without compromising to maintain an average classification ability in almost all the datasets considered in this work for evaluation of the model.
基于多粒度度量的代理辅助多目标遗传模糊关联分类
提出了一种基于多粒度学习的代理辅助多目标遗传模糊关联分类模型。具体方法是将多目标遗传算法(MOGAs)、径向基函数神经网络(RBFNs)和粗糙集相结合。我们表明,与[34]中提出的方法相比,我们的方法只需要少量的适应度评估,而不会影响在本工作中考虑的几乎所有数据集中保持平均分类能力来评估模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信