A kernel-based spectral model for non-Gaussian spatio-temporal processes

C. Wikle
{"title":"A kernel-based spectral model for non-Gaussian spatio-temporal processes","authors":"C. Wikle","doi":"10.1191/1471082x02st036oa","DOIUrl":null,"url":null,"abstract":"Spatio-temporal processes can often be written as hierarchical state-space processes. In situations with complicated dynamics such as wave propagation, it is difficult to parameterize state transition functions for high-dimensional state processes. Although in some cases prior understanding of the physical process can be used to formulate models for the state transition, this is not always possible. Alternatively, for processes where one considers discrete time and continuous space, complicated dynamics can be modeled by stochastic integro-difference equations in which the associated redistribution kernel is allowed to vary with space and/or time. By considering a spectral implementation of such models, one can formulate a spatio-temporal model with relatively few parameters that can accommodate complicated dynamics. This approach can be developed in a hierarchical framework for non-Gaussian processes, as demonstrated on cloud intensity data.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082x02st036oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

Abstract

Spatio-temporal processes can often be written as hierarchical state-space processes. In situations with complicated dynamics such as wave propagation, it is difficult to parameterize state transition functions for high-dimensional state processes. Although in some cases prior understanding of the physical process can be used to formulate models for the state transition, this is not always possible. Alternatively, for processes where one considers discrete time and continuous space, complicated dynamics can be modeled by stochastic integro-difference equations in which the associated redistribution kernel is allowed to vary with space and/or time. By considering a spectral implementation of such models, one can formulate a spatio-temporal model with relatively few parameters that can accommodate complicated dynamics. This approach can be developed in a hierarchical framework for non-Gaussian processes, as demonstrated on cloud intensity data.
非高斯时空过程的核谱模型
时空过程通常可以写成层次化的状态空间过程。在波传播等复杂动力学情况下,高维状态过程的状态转移函数难以参数化。虽然在某些情况下,对物理过程的预先理解可以用来制定状态转换的模型,但这并不总是可能的。另外,对于考虑离散时间和连续空间的过程,复杂的动力学可以通过随机积分差分方程来建模,其中允许相关的再分配核随空间和/或时间变化。通过考虑这些模型的频谱实现,可以用相对较少的参数制定一个时空模型,可以适应复杂的动力学。这种方法可以在非高斯过程的分层框架中开发,如云强度数据所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信