Asymptotic Behavior Of Margin-Based Classification Methods

Hanwen Huang
{"title":"Asymptotic Behavior Of Margin-Based Classification Methods","authors":"Hanwen Huang","doi":"10.1109/SSP.2018.8450750","DOIUrl":null,"url":null,"abstract":"We investigate the asymptotic behavior of the margin-based classification methods in the limit of large dimension $ p\\rightarrow \\infty $ and large sample size $n \\rightarrow \\infty $ at fixed rate $\\alpha = n/p$. Under spiked population model, we first derive a general framework for describing the performance of a class of classification methods. Then we apply this framework to two commonly used classification methods: Support Vector Machine (SVM) and Distance Weighted Discrimination (DWD). Our analytical results show that DWD is less sensitive to the tuning parameter and achieves better performance than SVM in situations where $n\\lt p$. This finding provides a theoretical confirmation to the empirical results that have been observed in many previous simulation and real data studies.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We investigate the asymptotic behavior of the margin-based classification methods in the limit of large dimension $ p\rightarrow \infty $ and large sample size $n \rightarrow \infty $ at fixed rate $\alpha = n/p$. Under spiked population model, we first derive a general framework for describing the performance of a class of classification methods. Then we apply this framework to two commonly used classification methods: Support Vector Machine (SVM) and Distance Weighted Discrimination (DWD). Our analytical results show that DWD is less sensitive to the tuning parameter and achieves better performance than SVM in situations where $n\lt p$. This finding provides a theoretical confirmation to the empirical results that have been observed in many previous simulation and real data studies.
基于边缘的分类方法的渐近行为
我们研究了基于边缘的分类方法在大维度$ p\rightarrow \infty $和大样本量$n \rightarrow \infty $固定速率$\alpha = n/p$的极限下的渐近行为。在尖刺种群模型下,我们首先推导了描述一类分类方法性能的一般框架。然后将该框架应用于两种常用的分类方法:支持向量机(SVM)和距离加权辨别(DWD)。我们的分析结果表明,DWD对调优参数的敏感性较低,在$n\lt p$。这一发现为以前许多模拟和实际数据研究中观察到的经验结果提供了理论证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信