Tomosynthesis reconstruction using an accelerated expectation maximisation algorithm with novel data structure based on sparse matrix ray-tracing method

Weihua Zhou, Apuroop Balla, Ying Chen
{"title":"Tomosynthesis reconstruction using an accelerated expectation maximisation algorithm with novel data structure based on sparse matrix ray-tracing method","authors":"Weihua Zhou, Apuroop Balla, Ying Chen","doi":"10.1504/IJFIPM.2008.022152","DOIUrl":null,"url":null,"abstract":"Digital Breast Tomosynthesis (DBT) is a novel imaging technology to improve early breast cancer detection. It provides three-dimensional information of the breast to overcome the critical issues of overlapping anatomical structures of the breast. Among current available DBT reconstruction algorithms, Maximum Likelihood Expectation-Maximisation (MLEM) is a time-consuming iterative method to reconstruct three-dimensional image of the breast. In this paper, we proposed an accelerated MLEM algorithm with novel data structure based on sparse matrix ray-tracing method for DBT reconstruction. Compared with the standard MLEM, the proposed algorithm is effective to generate relative fast-speed tomosynthesis reconstruction and maintain the same image quality.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2008.022152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Digital Breast Tomosynthesis (DBT) is a novel imaging technology to improve early breast cancer detection. It provides three-dimensional information of the breast to overcome the critical issues of overlapping anatomical structures of the breast. Among current available DBT reconstruction algorithms, Maximum Likelihood Expectation-Maximisation (MLEM) is a time-consuming iterative method to reconstruct three-dimensional image of the breast. In this paper, we proposed an accelerated MLEM algorithm with novel data structure based on sparse matrix ray-tracing method for DBT reconstruction. Compared with the standard MLEM, the proposed algorithm is effective to generate relative fast-speed tomosynthesis reconstruction and maintain the same image quality.
基于稀疏矩阵射线追踪法的加速期望最大化层合重建
数字乳腺断层合成(DBT)是一种提高乳腺癌早期检测的新型成像技术。它提供了乳房的三维信息,以克服乳房重叠解剖结构的关键问题。在现有的DBT重建算法中,极大似然期望最大化(Maximum Likelihood expectation - maximization, MLEM)是一种耗时的乳房三维图像重建迭代方法。本文提出了一种基于稀疏矩阵射线追踪法的加速MLEM算法,该算法具有新颖的数据结构,用于DBT重建。与标准MLEM相比,该算法能有效地生成相对快速的断层合成重建,并保持相同的图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信