An application of a rule-based model in software quality classification

Lofton A. Bullard, T. Khoshgoftaar, Kehan Gao
{"title":"An application of a rule-based model in software quality classification","authors":"Lofton A. Bullard, T. Khoshgoftaar, Kehan Gao","doi":"10.1109/ICMLA.2007.69","DOIUrl":null,"url":null,"abstract":"A new rule-based classification model (RBCM) and rule-based model selection technique are presented. The RBCM utilizes rough set theory to significantly reduce the number of attributes, discretation to partition the domain of attribute values, and Boolean predicates to generate the decision rules that comprise the model. When the domain values of an attribute are continuous and relatively large, rough set theory requires that they be discretized. The subsequent discretized domain must have the same characteristics as the original domain values. However, this can lead to a large number of partitions of the attribute's domain space, which in turn leads to large rule sets. These rule sets tend to form models that over-fit. To address this issue, the proposed rule-based model adopts a new model selection strategy that minimizes over-fitting for the RBCM. Empirical validation of the RBCM is accomplished through a case study on a large legacy telecommunications system. The results demonstrate that the proposed RBCM and the model selection strategy are effective in identifying the classification model that minimizes over-fitting and high cost classification errors.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A new rule-based classification model (RBCM) and rule-based model selection technique are presented. The RBCM utilizes rough set theory to significantly reduce the number of attributes, discretation to partition the domain of attribute values, and Boolean predicates to generate the decision rules that comprise the model. When the domain values of an attribute are continuous and relatively large, rough set theory requires that they be discretized. The subsequent discretized domain must have the same characteristics as the original domain values. However, this can lead to a large number of partitions of the attribute's domain space, which in turn leads to large rule sets. These rule sets tend to form models that over-fit. To address this issue, the proposed rule-based model adopts a new model selection strategy that minimizes over-fitting for the RBCM. Empirical validation of the RBCM is accomplished through a case study on a large legacy telecommunications system. The results demonstrate that the proposed RBCM and the model selection strategy are effective in identifying the classification model that minimizes over-fitting and high cost classification errors.
基于规则的模型在软件质量分类中的应用
提出一种新的基于规则的分类模型(RBCM)和基于规则的模型选择技术。RBCM利用粗糙集理论来显著减少属性的数量,利用离散来划分属性值的域,利用布尔谓词来生成组成模型的决策规则。当属性的域值连续且较大时,粗糙集理论要求将其离散化。后续的离散化域必须具有与原始域值相同的特征。然而,这可能导致属性的域空间的大量分区,进而导致大型规则集。这些规则集往往形成过拟合的模型。为了解决这一问题,所提出的基于规则的模型采用了一种新的模型选择策略,使RBCM的过拟合最小化。RBCM的实证验证是通过一个大型遗留电信系统的案例研究完成的。结果表明,所提出的RBCM和模型选择策略能够有效地识别出最小化过拟合和高代价分类误差的分类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信