Bilateral identities of the Rogers–Ramanujan type

M. Schlosser
{"title":"Bilateral identities of the Rogers–Ramanujan type","authors":"M. Schlosser","doi":"10.1090/btran/158","DOIUrl":null,"url":null,"abstract":"We derive by analytic means a number of bilateral identities of the Rogers–Ramanujan type. Our results include bilateral extensions of the Rogers–Ramanujan and the Göllnitz–Gordon identities, and of related identities by Ramanujan, Jackson, and Slater. We give corresponding results for multisums including multilateral extensions of the Andrews–Gordon identities, of the Andrews–Bressoud generalization of the Göllnitz–Gordon identities, of Bressoud’s even modulus identities, and other identities. Our closed form bilateral and multilateral summations appear to be the very first of their kind.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We derive by analytic means a number of bilateral identities of the Rogers–Ramanujan type. Our results include bilateral extensions of the Rogers–Ramanujan and the Göllnitz–Gordon identities, and of related identities by Ramanujan, Jackson, and Slater. We give corresponding results for multisums including multilateral extensions of the Andrews–Gordon identities, of the Andrews–Bressoud generalization of the Göllnitz–Gordon identities, of Bressoud’s even modulus identities, and other identities. Our closed form bilateral and multilateral summations appear to be the very first of their kind.
罗杰斯-拉马努金类型的双边身份
我们用解析方法导出了罗杰斯-拉马努金型的若干双侧恒等式。我们的结果包括Rogers-Ramanujan和Göllnitz-Gordon恒等式的双边推广,以及Ramanujan、Jackson和Slater的相关恒等式的双边推广。我们给出了Andrews-Gordon恒等式的多边推广、Andrews-Bressoud对Göllnitz-Gordon恒等式的推广、Bressoud偶模恒等式以及其他恒等式的多和的相应结果。我们的封闭形式的双边和多边会议似乎是此类会议的第一次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信