Application of Genetic Algorithm in Semi-batch Polymerization Temperature Control

F. A. Thobiani, Esra Elhadad, A. Shamekh, A. Altowati
{"title":"Application of Genetic Algorithm in Semi-batch Polymerization Temperature Control","authors":"F. A. Thobiani, Esra Elhadad, A. Shamekh, A. Altowati","doi":"10.1109/i2cacis54679.2022.9815457","DOIUrl":null,"url":null,"abstract":"A Genetic Algorithm (GA) combined with a two-loop PID-PI control structure is utilized to control the temperature of a semi-batch polymerization reactor (SBPR). The Chylla-Haase benchmark model is considered in this work. The GA-based optimization is exploited in single and multi-objective problems to determine the desired controller setting. The study is conducted in the Matlab/Simulink environment with several simulation scenarios. The obtained results reveal that the GA-based PID-PI technique can provide consistent performance that satisfies the system constraints. Moreover, the proposed algorithm does not contain heavy calculation burdens and can be tuned offline.","PeriodicalId":332297,"journal":{"name":"2022 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/i2cacis54679.2022.9815457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Genetic Algorithm (GA) combined with a two-loop PID-PI control structure is utilized to control the temperature of a semi-batch polymerization reactor (SBPR). The Chylla-Haase benchmark model is considered in this work. The GA-based optimization is exploited in single and multi-objective problems to determine the desired controller setting. The study is conducted in the Matlab/Simulink environment with several simulation scenarios. The obtained results reveal that the GA-based PID-PI technique can provide consistent performance that satisfies the system constraints. Moreover, the proposed algorithm does not contain heavy calculation burdens and can be tuned offline.
遗传算法在半批量聚合温度控制中的应用
采用遗传算法结合双环PID-PI控制结构对半间歇聚合反应器(SBPR)的温度进行控制。在这项工作中考虑了Chylla-Haase基准模型。将基于遗传算法的优化应用于单目标和多目标问题,以确定理想的控制器设置。本研究是在Matlab/Simulink环境下进行的,有几个仿真场景。结果表明,基于ga的PID-PI技术能够提供满足系统约束的一致性性能。此外,该算法的计算负担较小,可以离线调优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信