Posebits for Monocular Human Pose Estimation

Gerard Pons-Moll, David J. Fleet, B. Rosenhahn
{"title":"Posebits for Monocular Human Pose Estimation","authors":"Gerard Pons-Moll, David J. Fleet, B. Rosenhahn","doi":"10.1109/CVPR.2014.300","DOIUrl":null,"url":null,"abstract":"We advocate the inference of qualitative information about 3D human pose, called posebits, from images. Posebits represent Boolean geometric relationships between body parts (e.g., left-leg in front of right-leg or hands close to each other). The advantages of posebits as a mid-level representation are 1) for many tasks of interest, such qualitative pose information may be sufficient (e.g., semantic image retrieval), 2) it is relatively easy to annotate large image corpora with posebits, as it simply requires answers to yes/no questions, and 3) they help resolve challenging pose ambiguities and therefore facilitate the difficult talk of image-based 3D pose estimation. We introduce posebits, a posebit database, a method for selecting useful posebits for pose estimation and a structural SVM model for posebit inference. Experiments show the use of posebits for semantic image retrieval and for improving 3D pose estimation.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"19 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

We advocate the inference of qualitative information about 3D human pose, called posebits, from images. Posebits represent Boolean geometric relationships between body parts (e.g., left-leg in front of right-leg or hands close to each other). The advantages of posebits as a mid-level representation are 1) for many tasks of interest, such qualitative pose information may be sufficient (e.g., semantic image retrieval), 2) it is relatively easy to annotate large image corpora with posebits, as it simply requires answers to yes/no questions, and 3) they help resolve challenging pose ambiguities and therefore facilitate the difficult talk of image-based 3D pose estimation. We introduce posebits, a posebit database, a method for selecting useful posebits for pose estimation and a structural SVM model for posebit inference. Experiments show the use of posebits for semantic image retrieval and for improving 3D pose estimation.
用于单目人体姿态估计的波塞比特
我们提倡从图像中推断关于三维人体姿势的定性信息,称为posebits。波塞位表示身体部位之间的布尔几何关系(例如,左腿在右腿前面或双手彼此靠近)。posebit作为中级表示的优点是:1)对于许多感兴趣的任务,这种定性的姿态信息可能是足够的(例如,语义图像检索);2)用posebit注释大型图像语料库相对容易,因为它只需要回答是/否问题;3)它们有助于解决具有挑战性的姿态歧义,从而促进基于图像的3D姿态估计的困难讨论。我们介绍了波塞比特、波塞比特数据库、一种选择有用波塞比特进行位姿估计的方法以及一种用于波塞比特推断的结构支持向量机模型。实验表明,posebit可用于语义图像检索和改进三维姿态估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信