Hybrid Intelligent Machine Learning based Ultra-short Term Generation Prediction of Photovoltaic Systems

Yongguang Wang, Chuncheng Cao, Zhimin Wo, Songtao Tian, Yang Bai, Xu Tai
{"title":"Hybrid Intelligent Machine Learning based Ultra-short Term Generation Prediction of Photovoltaic Systems","authors":"Yongguang Wang, Chuncheng Cao, Zhimin Wo, Songtao Tian, Yang Bai, Xu Tai","doi":"10.1109/DCABES57229.2022.00037","DOIUrl":null,"url":null,"abstract":"This work developed an ultra short-term photovoltaic power prediction model based on hybrid intelligent technology. The proposed model adopts a series of data processing technologies, including input variable selection based on statistical analysis, attribute reduction based on principal component analysis (PCA) and feature subset division based on the K-means clustering algorithm, to obtain a more relevant and effective data as input information for prediction. The model uses an adaptive neural fuzzy inference system (ANFIS) to train and learn the input information to obtain the output prediction results. The particle swarm optimization (PSO) algorithm is adopted in the training process to optimize the ANFIS parameters to reduce the prediction error. The proposed solution is evaluated through simulation experiments and the numerical results demonstrate that it can achieve effective prediction accuracy and has good adaptability.","PeriodicalId":344365,"journal":{"name":"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES57229.2022.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work developed an ultra short-term photovoltaic power prediction model based on hybrid intelligent technology. The proposed model adopts a series of data processing technologies, including input variable selection based on statistical analysis, attribute reduction based on principal component analysis (PCA) and feature subset division based on the K-means clustering algorithm, to obtain a more relevant and effective data as input information for prediction. The model uses an adaptive neural fuzzy inference system (ANFIS) to train and learn the input information to obtain the output prediction results. The particle swarm optimization (PSO) algorithm is adopted in the training process to optimize the ANFIS parameters to reduce the prediction error. The proposed solution is evaluated through simulation experiments and the numerical results demonstrate that it can achieve effective prediction accuracy and has good adaptability.
基于混合智能机器学习的光伏系统超短期发电预测
本文建立了一种基于混合智能技术的超短期光伏发电功率预测模型。该模型采用基于统计分析的输入变量选择、基于主成分分析(PCA)的属性约简、基于k均值聚类算法的特征子集划分等一系列数据处理技术,获取更相关、更有效的数据作为预测的输入信息。该模型采用自适应神经模糊推理系统(ANFIS)对输入信息进行训练和学习,从而获得输出预测结果。在训练过程中采用粒子群优化算法(PSO)对ANFIS参数进行优化,降低预测误差。通过仿真实验对该方法进行了评价,数值结果表明该方法具有较好的预测精度和较好的自适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信