Fingerprint localization using WLAN RSS and magnetic field with landmark detection

Peng Tang, Zhiqing Huang, Jun Lei
{"title":"Fingerprint localization using WLAN RSS and magnetic field with landmark detection","authors":"Peng Tang, Zhiqing Huang, Jun Lei","doi":"10.1109/CIACT.2017.7977316","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed an indoor localization technique which use WLAN fingerprint and magnetic field fingerprint with landmarks detection. First, we use WLAN RSS fingerprint and magnetic field fingerprint to improve fingerprint's spatial and time characterization and localization accuracy. Second against the special position like stairs, elevators, etc., we mark the special position as landmarks and use the accelerometer sensor data to detect whether the user is in the special position. Through landmarks detection we can reduce the impact of the limitations of location fingerprinting positioning effectively and improve the localization algorithm's efficiency. Experimental results show that, compared to a single widely used WLAN RSS fingerprint localization algorithm, the proposed algorithm can effectively improve the accuracy and efficiency of indoor location.","PeriodicalId":218079,"journal":{"name":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIACT.2017.7977316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we proposed an indoor localization technique which use WLAN fingerprint and magnetic field fingerprint with landmarks detection. First, we use WLAN RSS fingerprint and magnetic field fingerprint to improve fingerprint's spatial and time characterization and localization accuracy. Second against the special position like stairs, elevators, etc., we mark the special position as landmarks and use the accelerometer sensor data to detect whether the user is in the special position. Through landmarks detection we can reduce the impact of the limitations of location fingerprinting positioning effectively and improve the localization algorithm's efficiency. Experimental results show that, compared to a single widely used WLAN RSS fingerprint localization algorithm, the proposed algorithm can effectively improve the accuracy and efficiency of indoor location.
利用无线局域网RSS和磁场进行指纹定位
本文提出了一种利用无线局域网指纹和磁场指纹结合地标检测的室内定位技术。首先,我们采用无线局域网RSS指纹和磁场指纹来提高指纹的时空表征和定位精度。其次,针对楼梯、电梯等特殊位置,我们将特殊位置标记为地标,并使用加速度计传感器数据检测用户是否处于特殊位置。通过地标检测可以有效降低位置指纹定位局限性的影响,提高定位算法的效率。实验结果表明,与目前广泛使用的单一WLAN RSS指纹定位算法相比,本文算法能有效提高室内定位的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信