GOGA: GO-driven Genetic Algorithm-based fuzzy clustering of gene expression data

A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, B. Brors
{"title":"GOGA: GO-driven Genetic Algorithm-based fuzzy clustering of gene expression data","authors":"A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, B. Brors","doi":"10.1109/ICSMB.2010.5735376","DOIUrl":null,"url":null,"abstract":"In this article, a Genetic Algorithm-based fuzzy clustering method (GOGA), which incorporates Gene Ontology (GO) knowledge in the clustering process, has been proposed for clustering microarray gene expression data. The proposed technique combines the expression-based and GO-based gene dissimilarity measures for this purpose. Both expression-based and GO-based clustering objectives have been incorporated in the fitness function. The performance of the proposed technique has been demonstrated on real-life Yeast Cell Cycle data set. KEGG pathway based enrichment studies have been conducted for validating the clustering results.","PeriodicalId":297136,"journal":{"name":"2010 International Conference on Systems in Medicine and Biology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Systems in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMB.2010.5735376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this article, a Genetic Algorithm-based fuzzy clustering method (GOGA), which incorporates Gene Ontology (GO) knowledge in the clustering process, has been proposed for clustering microarray gene expression data. The proposed technique combines the expression-based and GO-based gene dissimilarity measures for this purpose. Both expression-based and GO-based clustering objectives have been incorporated in the fitness function. The performance of the proposed technique has been demonstrated on real-life Yeast Cell Cycle data set. KEGG pathway based enrichment studies have been conducted for validating the clustering results.
GOGA:基于go驱动遗传算法的基因表达数据模糊聚类
本文提出了一种基于遗传算法的模糊聚类方法(GOGA),该方法将基因本体(Gene Ontology, GO)知识融入到聚类过程中,用于聚类微阵列基因表达数据。为此,提出的技术结合了基于表达和基于go的基因不相似性测量。适应度函数中包含了基于表达式和基于go的聚类目标。所提出的技术的性能已经证明了现实生活中的酵母细胞周期数据集。为了验证聚类结果,已经进行了基于KEGG途径的富集研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信