A comparison of dimensionality reduction methods for large biological data

Ashley Babjac, T. Royalty, A. D. Steen, Scott J. Emrich
{"title":"A comparison of dimensionality reduction methods for large biological data","authors":"Ashley Babjac, T. Royalty, A. D. Steen, Scott J. Emrich","doi":"10.1145/3535508.3545536","DOIUrl":null,"url":null,"abstract":"Large-scale data often suffer from the curse of dimensionality and the constraints associated with it; therefore, dimensionality reduction methods are often performed prior to most machine learning pipelines. In this paper, we directly compare autoencoders performance as a dimensionality reduction technique (via the latent space) to other established methods: PCA, LASSO, and t-SNE. To do so, we use four distinct datasets that vary in the types of features, metadata, labels, and size to robustly compare different methods. We test prediction capability using both Support Vector Machines (SVM) and Random Forests (RF). Significantly, we conclude that autoencoders are an equivalent dimensionality reduction architecture to the previously established methods, and often outperform them in both prediction accuracy and time performance when condensing large, sparse datasets.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale data often suffer from the curse of dimensionality and the constraints associated with it; therefore, dimensionality reduction methods are often performed prior to most machine learning pipelines. In this paper, we directly compare autoencoders performance as a dimensionality reduction technique (via the latent space) to other established methods: PCA, LASSO, and t-SNE. To do so, we use four distinct datasets that vary in the types of features, metadata, labels, and size to robustly compare different methods. We test prediction capability using both Support Vector Machines (SVM) and Random Forests (RF). Significantly, we conclude that autoencoders are an equivalent dimensionality reduction architecture to the previously established methods, and often outperform them in both prediction accuracy and time performance when condensing large, sparse datasets.
大型生物数据降维方法的比较
大规模数据经常遭受维度的诅咒和与之相关的限制;因此,通常在大多数机器学习管道之前执行降维方法。在本文中,我们直接比较了自编码器作为降维技术(通过潜在空间)与其他已建立的方法(PCA, LASSO和t-SNE)的性能。为了做到这一点,我们使用了四个不同的数据集,这些数据集在特征、元数据、标签和大小的类型上有所不同,以稳健地比较不同的方法。我们使用支持向量机(SVM)和随机森林(RF)来测试预测能力。值得注意的是,我们得出结论,自动编码器是一种与先前建立的方法等效的降维架构,并且在压缩大型稀疏数据集时,通常在预测精度和时间性能方面优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信