Improving Intent Detection Accuracy Through Token Level Labeling

Michal Lew, Aleksander Obuchowski, Monika Kutyła
{"title":"Improving Intent Detection Accuracy Through Token Level Labeling","authors":"Michal Lew, Aleksander Obuchowski, Monika Kutyła","doi":"10.4230/OASIcs.LDK.2021.30","DOIUrl":null,"url":null,"abstract":"Intent detection is traditionally modeled as a sequence classification task where the role of the models is to map the users’ utterances to their class. In this paper, however, we show that the classification accuracy can be improved with the use of token level intent annotations and introducing new annotation guidelines for labeling sentences in the intent detection task. What is more, we introduce a method for training the network to predict joint sentence level and token level annotations. We also test the effects of different annotation schemes (BIO, binary, sentence intent) on the model’s accuracy. 2012 ACM Subject Classification Computing methodologies → Natural language processing","PeriodicalId":377119,"journal":{"name":"International Conference on Language, Data, and Knowledge","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Language, Data, and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.LDK.2021.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Intent detection is traditionally modeled as a sequence classification task where the role of the models is to map the users’ utterances to their class. In this paper, however, we show that the classification accuracy can be improved with the use of token level intent annotations and introducing new annotation guidelines for labeling sentences in the intent detection task. What is more, we introduce a method for training the network to predict joint sentence level and token level annotations. We also test the effects of different annotation schemes (BIO, binary, sentence intent) on the model’s accuracy. 2012 ACM Subject Classification Computing methodologies → Natural language processing
通过令牌级标注提高意图检测的准确性
意图检测传统上被建模为序列分类任务,其中模型的作用是将用户的话语映射到他们的类别。然而,在本文中,我们证明了在意图检测任务中使用令牌级意图注释和引入新的标注准则来标记句子可以提高分类精度。此外,我们还介绍了一种训练网络预测联合句子级和标记级注释的方法。我们还测试了不同标注方案(BIO、二进制、句子意图)对模型准确性的影响。2012 ACM主题分类计算方法→自然语言处理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信