Combing multiple linear regression and manifold regularization for indoor positioning from unique radio signal

Zhenyu Chen, Jingye Zhou, Yiqiang Chen, Xingyu Gao
{"title":"Combing multiple linear regression and manifold regularization for indoor positioning from unique radio signal","authors":"Zhenyu Chen, Jingye Zhou, Yiqiang Chen, Xingyu Gao","doi":"10.1109/JCPC.2009.5420112","DOIUrl":null,"url":null,"abstract":"Traditional learning methods for indoor positioning are based on a multitude of wireless radio signals synchronously, while only one or two Access Points (APs) can be perpetually and steadily received by users in the real-world indoor environment. In this paper, we propose a novel indoor positioning method by two aspects. On the one hand, we establish multiple linear regression to estimate the Euclidean distance between reference AP and mobile terminals. On the other, we propose manifold regularization approach to predict the intersection angle drew from reference baseline. Experimental results show that our proposed method achieves an acceptable and effective room-level precision using unique radio signal in the deployed indoor test-bed.","PeriodicalId":284323,"journal":{"name":"2009 Joint Conferences on Pervasive Computing (JCPC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Joint Conferences on Pervasive Computing (JCPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCPC.2009.5420112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Traditional learning methods for indoor positioning are based on a multitude of wireless radio signals synchronously, while only one or two Access Points (APs) can be perpetually and steadily received by users in the real-world indoor environment. In this paper, we propose a novel indoor positioning method by two aspects. On the one hand, we establish multiple linear regression to estimate the Euclidean distance between reference AP and mobile terminals. On the other, we propose manifold regularization approach to predict the intersection angle drew from reference baseline. Experimental results show that our proposed method achieves an acceptable and effective room-level precision using unique radio signal in the deployed indoor test-bed.
结合多元线性回归和流形正则化的室内唯一无线电信号定位方法
传统的室内定位学习方法是基于大量无线无线电信号同步进行的,而用户在真实的室内环境中只有一个或两个接入点(ap)可以持续稳定地接收到。本文从两个方面提出了一种新的室内定位方法。一方面,我们建立多元线性回归来估计参考AP与移动终端之间的欧氏距离。另一方面,我们提出了流形正则化方法来预测从参考基线绘制的相交角。实验结果表明,在已部署的室内试验台中,该方法利用独特的无线电信号获得了可接受的、有效的室内级精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信