{"title":"Parallel Recursive Computations where Both Recombination and Partition Overheads are Problem-Dependent","authors":"A. Saha, M. D. Wagh","doi":"10.1109/ICPP.1994.152","DOIUrl":null,"url":null,"abstract":"Parallel recursive computations incorporating the unavoidable and significant parallel computing overheads, encompassing a wide variety of applications, can be modeled as T(n) = left{ {mathop {min }limits_{0 le r le n}^{t_{(),} } } right.left{ {max left{ {T(n - r),T(r) + k(r)} right} + mathop {mathop {lambda (n,r)}limits_{otherwise} }limits^{forn le n_{(),} } } right} where k(r) and X(n,r) represent the partition and recombination overheads respectively. The optimal partition size (solution to r of the above minmax recurrence relation) is nontrivial and is very different from the n/2 value conventionally used. Using the optimal partitions at every stage of the recursion enhances the performance greatly. In this paper we solve a challenging case of our parallel recursive model where the overhead functions are problem-dependent.","PeriodicalId":162043,"journal":{"name":"1994 International Conference on Parallel Processing Vol. 3","volume":"494 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 International Conference on Parallel Processing Vol. 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.1994.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Parallel recursive computations incorporating the unavoidable and significant parallel computing overheads, encompassing a wide variety of applications, can be modeled as T(n) = left{ {mathop {min }limits_{0 le r le n}^{t_{(),} } } right.left{ {max left{ {T(n - r),T(r) + k(r)} right} + mathop {mathop {lambda (n,r)}limits_{otherwise} }limits^{forn le n_{(),} } } right} where k(r) and X(n,r) represent the partition and recombination overheads respectively. The optimal partition size (solution to r of the above minmax recurrence relation) is nontrivial and is very different from the n/2 value conventionally used. Using the optimal partitions at every stage of the recursion enhances the performance greatly. In this paper we solve a challenging case of our parallel recursive model where the overhead functions are problem-dependent.