C. Roeloffzen, A. Meijerink, L. Zhuang, D. Marpaung, R. Heideman, A. Leinse, M. Hoekman, W. van Etten
{"title":"Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology","authors":"C. Roeloffzen, A. Meijerink, L. Zhuang, D. Marpaung, R. Heideman, A. Leinse, M. Hoekman, W. van Etten","doi":"10.1117/12.803719","DOIUrl":null,"url":null,"abstract":"In this paper a novel CW laser-compatible, squint-free, continuously tunable ring resonator-based optical beamformer mechanism for a phased array receiver system is proposed and partly demonstrated. When the optical delay elements and optical signal processing circuitry are integrated on a chip, a single-chip optical beam forming network (OBFN) is obtained. The optical delay elements are ideally continuously tunable to achieve continuous control of the beam direction, and should have a flat delay and magnitude response over the signal band, to avoid distortion. In the proposed system architecture, filter-based optical single-sideband suppressed-carrier modulation and balanced coherent optical detection are used. Such architecture has significant advantages over a straightforward architecture using optical intensity modulation and direct optical detection, namely reduced complexity of the OBFN chip, and enhanced dynamic range. Measurements on an actual 1×8 OBFN chip and an optical sideband filter chip are presented. Both are realized in CMOS-compatible planar optical waveguide technology (TriPleX).","PeriodicalId":179447,"journal":{"name":"SPIE/OSA/IEEE Asia Communications and Photonics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/OSA/IEEE Asia Communications and Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.803719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper a novel CW laser-compatible, squint-free, continuously tunable ring resonator-based optical beamformer mechanism for a phased array receiver system is proposed and partly demonstrated. When the optical delay elements and optical signal processing circuitry are integrated on a chip, a single-chip optical beam forming network (OBFN) is obtained. The optical delay elements are ideally continuously tunable to achieve continuous control of the beam direction, and should have a flat delay and magnitude response over the signal band, to avoid distortion. In the proposed system architecture, filter-based optical single-sideband suppressed-carrier modulation and balanced coherent optical detection are used. Such architecture has significant advantages over a straightforward architecture using optical intensity modulation and direct optical detection, namely reduced complexity of the OBFN chip, and enhanced dynamic range. Measurements on an actual 1×8 OBFN chip and an optical sideband filter chip are presented. Both are realized in CMOS-compatible planar optical waveguide technology (TriPleX).