Predicting Software Anomalies Using Machine Learning Techniques

Javier Alonso, L. B. Muñoz, D. Avresky
{"title":"Predicting Software Anomalies Using Machine Learning Techniques","authors":"Javier Alonso, L. B. Muñoz, D. Avresky","doi":"10.1109/NCA.2011.29","DOIUrl":null,"url":null,"abstract":"In this paper, we present a detailed evaluation of a set of well-known Machine Learning classifiers in front of dynamic and non-deterministic software anomalies. The system state prediction is based on monitoring system metrics. This allows software proactive rejuvenation to be triggered automatically. Random Forest approach achieves validation errors less than 1% in comparison to the well-known ML algorithms under a valuation. In order to reduce automatically the number of monitored parameters, needed to predict software anomalies, we analyze Lasso Regularization technique jointly with the Machine Learning classifiers to evaluate how the prediction accuracy could be guaranteed within an acceptable threshold. This allows to reduce drastically (around 60% in the best case) the number of monitoring parameters. The framework, based on ML and Lasso regularization techniques, has been validated using an ecommerce environment with Apache Tomcat server, and MySql database server.","PeriodicalId":258309,"journal":{"name":"2011 IEEE 10th International Symposium on Network Computing and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 10th International Symposium on Network Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA.2011.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

In this paper, we present a detailed evaluation of a set of well-known Machine Learning classifiers in front of dynamic and non-deterministic software anomalies. The system state prediction is based on monitoring system metrics. This allows software proactive rejuvenation to be triggered automatically. Random Forest approach achieves validation errors less than 1% in comparison to the well-known ML algorithms under a valuation. In order to reduce automatically the number of monitored parameters, needed to predict software anomalies, we analyze Lasso Regularization technique jointly with the Machine Learning classifiers to evaluate how the prediction accuracy could be guaranteed within an acceptable threshold. This allows to reduce drastically (around 60% in the best case) the number of monitoring parameters. The framework, based on ML and Lasso regularization techniques, has been validated using an ecommerce environment with Apache Tomcat server, and MySql database server.
使用机器学习技术预测软件异常
在本文中,我们对一组著名的机器学习分类器在动态和不确定性软件异常前进行了详细的评估。系统状态预测基于监控系统指标。这允许软件主动恢复自动触发。与估值下的知名ML算法相比,随机森林方法的验证误差小于1%。为了减少预测软件异常所需的自动监测参数的数量,我们结合机器学习分类器分析了Lasso正则化技术,以评估如何在可接受的阈值内保证预测精度。这允许大幅减少(在最好的情况下约60%)监控参数的数量。该框架基于ML和Lasso正则化技术,已经使用带有Apache Tomcat服务器和MySql数据库服务器的电子商务环境进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信