A comparison between neural network and conventional vector quantization codebook algorithms

C. Pope, L. Atlas, C. Nelson
{"title":"A comparison between neural network and conventional vector quantization codebook algorithms","authors":"C. Pope, L. Atlas, C. Nelson","doi":"10.1109/PACRIM.1989.48416","DOIUrl":null,"url":null,"abstract":"Kohonen's (1988) unsupervised learning algorithm is successfully applied to the codebook generation problem. The algorithm has shown to provide a codebook that rivals the performance of the codebooks obtained using the conventional Linde-Buzo-Gray algorithm, while requiring a minimum amount of processing. The unsupervised learning algorithm provides the ability to adapt to changing inputs, something that is not possible with the standard algorithm. These features make Kohonen's unsupervised learning algorithm an attractive alternative to the conventional vector quantization codebook generation technique.<<ETX>>","PeriodicalId":256287,"journal":{"name":"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.1989.48416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Kohonen's (1988) unsupervised learning algorithm is successfully applied to the codebook generation problem. The algorithm has shown to provide a codebook that rivals the performance of the codebooks obtained using the conventional Linde-Buzo-Gray algorithm, while requiring a minimum amount of processing. The unsupervised learning algorithm provides the ability to adapt to changing inputs, something that is not possible with the standard algorithm. These features make Kohonen's unsupervised learning algorithm an attractive alternative to the conventional vector quantization codebook generation technique.<>
神经网络与传统矢量量化码本算法的比较
Kohonen(1988)的无监督学习算法成功地应用于码本生成问题。该算法已经证明可以提供与使用传统Linde-Buzo-Gray算法获得的码本性能相媲美的码本,同时需要最少的处理量。无监督学习算法提供了适应不断变化的输入的能力,这是标准算法无法做到的。这些特征使Kohonen的无监督学习算法成为传统矢量量化码本生成技术的一个有吸引力的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信