Economic Generation Scheduling Using Genetic Algorithm

A. Sivagami, M. Rathnakumar
{"title":"Economic Generation Scheduling Using Genetic Algorithm","authors":"A. Sivagami, M. Rathnakumar","doi":"10.2139/ssrn.2239221","DOIUrl":null,"url":null,"abstract":"Genetic algorithms are adaptive search methods that simulate some of the natural processes: selection, information, inheritance, random mutation and population dynamics. This paper presents an approach based on genetic algorithm to solve the economic load dispatch (ELD) problem with losses for thermal plant systems. This approach was tested for thermal plant systems. The performance of Genetic Algorithm - intelligent approach (GAs) is observed that this method is accurate and may replace effectively the conventional practices presently performed in different central load dispatch centers.","PeriodicalId":374055,"journal":{"name":"Scheduling eJournal","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scheduling eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2239221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Genetic algorithms are adaptive search methods that simulate some of the natural processes: selection, information, inheritance, random mutation and population dynamics. This paper presents an approach based on genetic algorithm to solve the economic load dispatch (ELD) problem with losses for thermal plant systems. This approach was tested for thermal plant systems. The performance of Genetic Algorithm - intelligent approach (GAs) is observed that this method is accurate and may replace effectively the conventional practices presently performed in different central load dispatch centers.
基于遗传算法的经济发电调度
遗传算法是一种自适应搜索方法,它模拟了一些自然过程:选择、信息、遗传、随机突变和种群动态。本文提出了一种基于遗传算法的方法来解决热电厂系统的经济负荷调度问题。该方法已在热电厂系统中进行了测试。通过对遗传算法-智能方法(GAs)的性能观察,表明该方法是准确的,可以有效地取代目前在不同中心负荷调度中心采用的传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信