A CPM signal denoising method based on attention network

Xiaopeng Zhang, Xiaolin Zhang, Hao Chen
{"title":"A CPM signal denoising method based on attention network","authors":"Xiaopeng Zhang, Xiaolin Zhang, Hao Chen","doi":"10.1117/12.2631551","DOIUrl":null,"url":null,"abstract":"Cognitive communication countermeasure system utilizes artificial intelligence technology to quickly realize electromagnetic dynamic perception and electronic jamming strategy generation. In the complex electromagnetic environment of the modern battlefield, continuous phase modulation (CPM) signals are getting more and more attention due to high spectral efficiency and power efficiency. CPM signal denoising processing helps to improve electromagnetic dynamic perception performance. In this paper, a novel model, namely attentional denoising autoencoder (ADE), is proposed with enhanced signal denoising by introducing self-attentional mechanism into the autoencoder. The proposed method divides the one-dimensional communication signal sequence into fixed-size signal patches satisfying the same modulation law, and then utilizes the parallel computing of the self-attention mechanism to model the dependencies between the signal patches, and finally average pooling is used to synthesize the information of each signal patch to reconstruct the signal. The simulation results demonstrate that the proposed model is superior to other methods in terms of the denoising effect, and has a high degree of waveform recovery, which is helpful for the subsequent perception and processing of CPM signals.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2631551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cognitive communication countermeasure system utilizes artificial intelligence technology to quickly realize electromagnetic dynamic perception and electronic jamming strategy generation. In the complex electromagnetic environment of the modern battlefield, continuous phase modulation (CPM) signals are getting more and more attention due to high spectral efficiency and power efficiency. CPM signal denoising processing helps to improve electromagnetic dynamic perception performance. In this paper, a novel model, namely attentional denoising autoencoder (ADE), is proposed with enhanced signal denoising by introducing self-attentional mechanism into the autoencoder. The proposed method divides the one-dimensional communication signal sequence into fixed-size signal patches satisfying the same modulation law, and then utilizes the parallel computing of the self-attention mechanism to model the dependencies between the signal patches, and finally average pooling is used to synthesize the information of each signal patch to reconstruct the signal. The simulation results demonstrate that the proposed model is superior to other methods in terms of the denoising effect, and has a high degree of waveform recovery, which is helpful for the subsequent perception and processing of CPM signals.
一种基于注意网络的CPM信号去噪方法
认知通信对抗系统利用人工智能技术,快速实现电磁动态感知和电子干扰策略生成。在现代战场复杂的电磁环境中,连续相位调制(CPM)信号由于具有较高的频谱效率和功率效率而受到越来越多的关注。CPM信号去噪处理有助于提高电磁动态感知性能。本文提出了一种新的模型,即注意去噪自编码器(ADE),该模型通过在自编码器中引入自注意机制来增强信号去噪。该方法将一维通信信号序列划分为满足相同调制规律的固定大小的信号块,然后利用自关注机制的并行计算对信号块之间的依赖关系进行建模,最后利用平均池化对每个信号块的信息进行综合,重构信号。仿真结果表明,该模型在去噪效果上优于其他方法,且具有较高的波形恢复度,有利于后续CPM信号的感知和处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信