{"title":"Markov chain Monte Carlo algorithms","authors":"J. Rosenthal","doi":"10.1109/WITS.1994.513879","DOIUrl":null,"url":null,"abstract":"We briefly describe Markov chain Monte Carlo algorithms, such as the Gibbs sampler and the Metropolis-Hastings (1953, 1970) algorithm, which are frequently used in the statistics literature to explore complicated probability distributions. We present a general method for proving rigorous, a priori bounds an the number of iterations required to achieve convergence of the algorithms.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We briefly describe Markov chain Monte Carlo algorithms, such as the Gibbs sampler and the Metropolis-Hastings (1953, 1970) algorithm, which are frequently used in the statistics literature to explore complicated probability distributions. We present a general method for proving rigorous, a priori bounds an the number of iterations required to achieve convergence of the algorithms.