{"title":"Multi-Modal Multi sensor Interaction between Human andHeterogeneous Multi-Robot System","authors":"S. Mahi","doi":"10.1145/3242969.3264971","DOIUrl":null,"url":null,"abstract":"I introduce a novel multi-modal multi-sensor interaction method between humans and heterogeneous multi-robot systems. I have also developed a novel algorithm to control heterogeneous multi-robot systems. The proposed algorithm allows the human operator to provide intentional cues and information to a multi-robot system using a multimodal multi-sensor touchscreen interface. My proposed method can effectively convey complex human intention to multiple robots as well as represent robots' intentions over the spatiotemporal domain. The proposed method is scalable and robust to dynamic change in the deployment configuration. I describe the implementation of the control algorithm used to control multiple quad-rotor unmanned aerial vehicles in simulated and real environments. I will also present my initial work on human interaction with the robots running my algorithm using mobile phone touch screens and other potential multimodal interactions.","PeriodicalId":308751,"journal":{"name":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242969.3264971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
I introduce a novel multi-modal multi-sensor interaction method between humans and heterogeneous multi-robot systems. I have also developed a novel algorithm to control heterogeneous multi-robot systems. The proposed algorithm allows the human operator to provide intentional cues and information to a multi-robot system using a multimodal multi-sensor touchscreen interface. My proposed method can effectively convey complex human intention to multiple robots as well as represent robots' intentions over the spatiotemporal domain. The proposed method is scalable and robust to dynamic change in the deployment configuration. I describe the implementation of the control algorithm used to control multiple quad-rotor unmanned aerial vehicles in simulated and real environments. I will also present my initial work on human interaction with the robots running my algorithm using mobile phone touch screens and other potential multimodal interactions.