Reachability analysis for uncertain SSPs

O. Buffet
{"title":"Reachability analysis for uncertain SSPs","authors":"O. Buffet","doi":"10.1142/S0218213007003527","DOIUrl":null,"url":null,"abstract":"Stochastic shortest path problems (SSPs) can be efficiently dealt with by the real-time dynamic programming algorithm (RTDP). Yet, RTDP requires that a goal state is always reachable. This paper presents an algorithm checking for goal reachability, especially in the complex case of an uncertain SSP where only a possible interval is known for each transition probability. This gives an analysis method for determining if SSP algorithms such as RTDP are applicable, even if the exact model is not known. We aim at a symbolic analysis in order to avoid a complete state-space enumeration","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218213007003527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Stochastic shortest path problems (SSPs) can be efficiently dealt with by the real-time dynamic programming algorithm (RTDP). Yet, RTDP requires that a goal state is always reachable. This paper presents an algorithm checking for goal reachability, especially in the complex case of an uncertain SSP where only a possible interval is known for each transition probability. This gives an analysis method for determining if SSP algorithms such as RTDP are applicable, even if the exact model is not known. We aim at a symbolic analysis in order to avoid a complete state-space enumeration
不确定ssp的可达性分析
实时动态规划算法(RTDP)可以有效地求解随机最短路径问题。然而,RTDP要求目标状态总是可达的。本文提出了一种目标可达性的检测算法,特别是在每个转移概率只知道一个可能区间的不确定SSP的复杂情况下。这提供了一种分析方法来确定SSP算法如RTDP是否适用,即使确切的模型是未知的。我们的目标是符号分析,以避免一个完整的状态空间枚举
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信