Towards Enabling Dynamic Resource Estimation and Correction for Improving Utilization in an Apache Mesos Cloud Environment

Gourav Rattihalli, M. Govindaraju, Devesh Tiwari
{"title":"Towards Enabling Dynamic Resource Estimation and Correction for Improving Utilization in an Apache Mesos Cloud Environment","authors":"Gourav Rattihalli, M. Govindaraju, Devesh Tiwari","doi":"10.1109/CCGRID.2019.00033","DOIUrl":null,"url":null,"abstract":"Academic cloud infrastructures require users to specify an estimate of their resource requirements. The resource usage for applications often depends on the input file sizes, parameters, optimization flags, and attributes, specified for each run. Incorrect estimation can result in low resource utilization of the entire infrastructure and long wait times for jobs in the queue. We have designed a Resource Utilization based Migration (RUMIG) system to address the resource estimation problem. We present the overall architecture of the two-stage elastic cluster design, the Apache Mesos-specific container migration system, and analyze the performance for several scientific workloads on three different cloud/cluster environments. In this paper we (b) present a design and implementation for container migration in a Mesos environment, (c) evaluate the effect of right-sizing and cluster elasticity on overall performance, (d) analyze different profiling intervals to determine the best fit, (e) determine the overhead of our profiling mechanism. Compared to the default use of Apache Mesos, in the best cases, RUMIG provides a gain of 65% in runtime (local cluster), 51% in CPU utilization in the Chameleon cloud, and 27% in memory utilization in the Jetstream cloud.","PeriodicalId":234571,"journal":{"name":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2019.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Academic cloud infrastructures require users to specify an estimate of their resource requirements. The resource usage for applications often depends on the input file sizes, parameters, optimization flags, and attributes, specified for each run. Incorrect estimation can result in low resource utilization of the entire infrastructure and long wait times for jobs in the queue. We have designed a Resource Utilization based Migration (RUMIG) system to address the resource estimation problem. We present the overall architecture of the two-stage elastic cluster design, the Apache Mesos-specific container migration system, and analyze the performance for several scientific workloads on three different cloud/cluster environments. In this paper we (b) present a design and implementation for container migration in a Mesos environment, (c) evaluate the effect of right-sizing and cluster elasticity on overall performance, (d) analyze different profiling intervals to determine the best fit, (e) determine the overhead of our profiling mechanism. Compared to the default use of Apache Mesos, in the best cases, RUMIG provides a gain of 65% in runtime (local cluster), 51% in CPU utilization in the Chameleon cloud, and 27% in memory utilization in the Jetstream cloud.
在Apache Mesos云环境中启用动态资源估计和校正以提高利用率
学术云基础设施要求用户指定对其资源需求的估计。应用程序的资源使用通常取决于为每次运行指定的输入文件大小、参数、优化标志和属性。不正确的估计可能导致整个基础设施的资源利用率低,并且队列中作业的等待时间长。我们设计了一个基于资源利用的迁移(RUMIG)系统来解决资源估计问题。我们介绍了两阶段弹性集群设计的总体架构,Apache mesos特定的容器迁移系统,并分析了在三种不同的云/集群环境下几种科学工作负载的性能。在本文中,我们(b)提出了Mesos环境中容器迁移的设计和实现,(c)评估适当的大小和集群弹性对整体性能的影响,(d)分析不同的分析间隔以确定最佳拟合,(e)确定我们的分析机制的开销。与Apache Mesos的默认使用相比,在最好的情况下,RUMIG在运行时(本地集群)上提供了65%的增益,在变色龙云中提供了51%的CPU利用率,在Jetstream云中提供了27%的内存利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信