Identifying Interesting Moments in Controllers Work Video via Dimensionality Reduction

Kristofer Krus, Tatiana Polishchuk, V. Polishchuk
{"title":"Identifying Interesting Moments in Controllers Work Video via Dimensionality Reduction","authors":"Kristofer Krus, Tatiana Polishchuk, V. Polishchuk","doi":"10.1109/AIDA-AT48540.2020.9049170","DOIUrl":null,"url":null,"abstract":"We explore use of machine learning in automating the discovery of meaningful time intervals in video data. We combine Convolutional Neural Networks and Principal Component Analysis in order to zoom-in on interesting moments in hours-long videos of air traffic controllers work. Experimental results for air traffic control tower at Stockholm Bromma airport confirm feasibility of our approach. The method may be consequently used to single out workload-influencing factors, incident investigation and other post-operational analysis of controllers performance.","PeriodicalId":106277,"journal":{"name":"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIDA-AT48540.2020.9049170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We explore use of machine learning in automating the discovery of meaningful time intervals in video data. We combine Convolutional Neural Networks and Principal Component Analysis in order to zoom-in on interesting moments in hours-long videos of air traffic controllers work. Experimental results for air traffic control tower at Stockholm Bromma airport confirm feasibility of our approach. The method may be consequently used to single out workload-influencing factors, incident investigation and other post-operational analysis of controllers performance.
通过降维识别控制器工作视频中的有趣时刻
我们探索机器学习在自动发现视频数据中有意义的时间间隔中的应用。我们将卷积神经网络和主成分分析相结合,以便在长达数小时的空中交通管制工作视频中放大有趣的时刻。斯德哥尔摩布罗姆马机场空中交通管制塔的实验结果证实了我们进近的可行性。因此,该方法可用于挑出工作量影响因素、事件调查和其他对控制员性能的操作后分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信