{"title":"Identifying Interesting Moments in Controllers Work Video via Dimensionality Reduction","authors":"Kristofer Krus, Tatiana Polishchuk, V. Polishchuk","doi":"10.1109/AIDA-AT48540.2020.9049170","DOIUrl":null,"url":null,"abstract":"We explore use of machine learning in automating the discovery of meaningful time intervals in video data. We combine Convolutional Neural Networks and Principal Component Analysis in order to zoom-in on interesting moments in hours-long videos of air traffic controllers work. Experimental results for air traffic control tower at Stockholm Bromma airport confirm feasibility of our approach. The method may be consequently used to single out workload-influencing factors, incident investigation and other post-operational analysis of controllers performance.","PeriodicalId":106277,"journal":{"name":"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIDA-AT48540.2020.9049170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We explore use of machine learning in automating the discovery of meaningful time intervals in video data. We combine Convolutional Neural Networks and Principal Component Analysis in order to zoom-in on interesting moments in hours-long videos of air traffic controllers work. Experimental results for air traffic control tower at Stockholm Bromma airport confirm feasibility of our approach. The method may be consequently used to single out workload-influencing factors, incident investigation and other post-operational analysis of controllers performance.