I. Rahimi, Theodore Picard, Andrew Morabito, Kiriakos Pampalis, Aiden Abignano, A. Gandomi
{"title":"Comparison of Trajectory and Population-Based Algorithms for Optimizing Constrained Open-Pit Mining Problem","authors":"I. Rahimi, Theodore Picard, Andrew Morabito, Kiriakos Pampalis, Aiden Abignano, A. Gandomi","doi":"10.1109/ISCMI56532.2022.10068481","DOIUrl":null,"url":null,"abstract":"The problem of open-pit mining optimization is a complex task, often containing many variables. In this paper, we apply a trajectory-based algorithm known as simulated annealing together with a well-known population-based algorithm, genetic algorithm, used to generate solutions for a formulation of the constrained pit problem (CPIT). Three datasets were used to test this simulation, Newman1, zuck_small, and KD. The results show that simulated annealing as a trajectory algorithm possesses a slightly better performance in comparison with the genetic algorithm in terms of profit value.","PeriodicalId":340397,"journal":{"name":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI56532.2022.10068481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of open-pit mining optimization is a complex task, often containing many variables. In this paper, we apply a trajectory-based algorithm known as simulated annealing together with a well-known population-based algorithm, genetic algorithm, used to generate solutions for a formulation of the constrained pit problem (CPIT). Three datasets were used to test this simulation, Newman1, zuck_small, and KD. The results show that simulated annealing as a trajectory algorithm possesses a slightly better performance in comparison with the genetic algorithm in terms of profit value.