Aerothermal predictions of combustor/turbine interactions using advanced turbulence modeling

F. Cottier, Pierre Pinchaud, G. Dumas
{"title":"Aerothermal predictions of combustor/turbine interactions using advanced turbulence modeling","authors":"F. Cottier, Pierre Pinchaud, G. Dumas","doi":"10.29008/ETC2019-050","DOIUrl":null,"url":null,"abstract":"The flow and temperature fields out of a combustion chamber are characterized by high variations, spatially and temporarily. This also results in high turbulence generation. The downstream turbine stage is subject to swirling hot spots and therefore to gradients that have to be taken into account in the design and sizing of the turbine components. In addition, these spots are transported further downstream through the turbine and interact with secondary turbine flows. This paper presents comparisons between numerical calculations and measurements carried out in a cold combustor simulator – a turbine rig representative for engine OTDF and RTDF. The traverse measurements recorded after each airfoil row are compared with CFD calculations of a full turbine model including ID disc cavities. Simulating simultaneously the cold combustor and the turbine allows taking these temporal variations into account. The configuration has been computed using conventional RANS-URANS methods as well as Scale-Adaptative Simulation (SAS) for turbulence modeling, and shows that this advanced model improved the hot/cold mixing significantly.","PeriodicalId":268187,"journal":{"name":"13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29008/ETC2019-050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The flow and temperature fields out of a combustion chamber are characterized by high variations, spatially and temporarily. This also results in high turbulence generation. The downstream turbine stage is subject to swirling hot spots and therefore to gradients that have to be taken into account in the design and sizing of the turbine components. In addition, these spots are transported further downstream through the turbine and interact with secondary turbine flows. This paper presents comparisons between numerical calculations and measurements carried out in a cold combustor simulator – a turbine rig representative for engine OTDF and RTDF. The traverse measurements recorded after each airfoil row are compared with CFD calculations of a full turbine model including ID disc cavities. Simulating simultaneously the cold combustor and the turbine allows taking these temporal variations into account. The configuration has been computed using conventional RANS-URANS methods as well as Scale-Adaptative Simulation (SAS) for turbulence modeling, and shows that this advanced model improved the hot/cold mixing significantly.
使用先进湍流模型的燃烧室/涡轮相互作用的气动热预测
燃烧室外的流场和温度场具有很大的时空变化特征。这也导致了高湍流的产生。下游涡轮级受到旋转热点的影响,因此在涡轮部件的设计和尺寸中必须考虑到梯度。此外,这些斑点通过涡轮进一步向下游输送,并与二次涡轮流动相互作用。本文介绍了在冷燃烧室模拟器中进行的数值计算和测量的比较,该模拟器是发动机OTDF和RTDF的代表涡轮钻机。每个翼型排后记录的横掠测量值与包含内径盘腔的全涡轮模型的CFD计算结果进行了比较。同时模拟冷燃烧室和涡轮机允许考虑这些时间变化。利用传统的ranss - urans方法和尺度自适应模拟(SAS)进行了紊流模拟计算,结果表明,这种先进的模型显著改善了热/冷混合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信