Quantized Rotational Motion in a Plane

J. Autschbach
{"title":"Quantized Rotational Motion in a Plane","authors":"J. Autschbach","doi":"10.1093/OSO/9780190920807.003.0015","DOIUrl":null,"url":null,"abstract":"The angular momentum for the simplified case of a particle rotating in a fixed plane is treated. The ‘perimeter model’ is the analogue of the one-dimensional particle in a box (PiaB), with the particle moving on a circle with fixed radius. This requires cyclic – or periodic – boundary conditions. It is shown that the quantum perimeter model results can be obtained by re-interpreting the coordinate of the linear PiaB and by considering the periodic boundary conditions. The eigenvalue pattern leads to a 4n+2 Huckel rule. Next, the chapter discusses hindered rotations, such as the rotation of a methyl group around a C-C bond. The solutions to the hindered rotation problem combine features of the harmonic oscillator at low energies, with features of the perimeter model at high energies.","PeriodicalId":207760,"journal":{"name":"Quantum Theory for Chemical Applications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Theory for Chemical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780190920807.003.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The angular momentum for the simplified case of a particle rotating in a fixed plane is treated. The ‘perimeter model’ is the analogue of the one-dimensional particle in a box (PiaB), with the particle moving on a circle with fixed radius. This requires cyclic – or periodic – boundary conditions. It is shown that the quantum perimeter model results can be obtained by re-interpreting the coordinate of the linear PiaB and by considering the periodic boundary conditions. The eigenvalue pattern leads to a 4n+2 Huckel rule. Next, the chapter discusses hindered rotations, such as the rotation of a methyl group around a C-C bond. The solutions to the hindered rotation problem combine features of the harmonic oscillator at low energies, with features of the perimeter model at high energies.
平面上的量子化旋转运动
讨论了粒子在固定平面上旋转的简化情况下的角动量。“周长模型”类似于盒子里的一维粒子(PiaB),粒子在一个半径固定的圆上运动。这需要循环或周期边界条件。结果表明,通过重新解释线性PiaB的坐标并考虑周期边界条件,可以得到量子周长模型的结果。特征值模式导致4n+2哈克规则。接下来,本章讨论阻碍旋转,例如甲基围绕C-C键的旋转。该问题的解结合了低能量时谐振子的特征和高能量时周长模型的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信