Optimization transfer approach to joint registration / reconstruction for motion-compensated image reconstruction

J. Fessler
{"title":"Optimization transfer approach to joint registration / reconstruction for motion-compensated image reconstruction","authors":"J. Fessler","doi":"10.1109/ISBI.2010.5490108","DOIUrl":null,"url":null,"abstract":"Motion artifacts in image reconstruction problems can be reduced by performing image motion estimation and image reconstruction jointly using a penalized-likelihood cost function. However, updating the motion parameters by conventional gradient-based iterations can be computationally demanding due to the system model required in inverse problems. This paper describes an optimization transfer approach that leads to minimization steps for the motion parameters that have comparable complexity to those needed in image registration problems. This approach can simplify the implementation of motion-compensated image reconstruction (MCIR) methods when the motion parameters are estimated jointly with the reconstructed image.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Motion artifacts in image reconstruction problems can be reduced by performing image motion estimation and image reconstruction jointly using a penalized-likelihood cost function. However, updating the motion parameters by conventional gradient-based iterations can be computationally demanding due to the system model required in inverse problems. This paper describes an optimization transfer approach that leads to minimization steps for the motion parameters that have comparable complexity to those needed in image registration problems. This approach can simplify the implementation of motion-compensated image reconstruction (MCIR) methods when the motion parameters are estimated jointly with the reconstructed image.
运动补偿图像重建中关节配准/重建的优化传递方法
通过使用惩罚似然代价函数联合执行图像运动估计和图像重建,可以减少图像重建问题中的运动伪影。然而,由于反问题需要系统模型,传统的基于梯度的迭代更新运动参数的计算量很大。本文描述了一种优化传递方法,该方法可以使运动参数的最小化步骤与图像配准问题中的运动参数具有相当的复杂性。当运动参数与重建图像联合估计时,该方法可以简化运动补偿图像重建(MCIR)方法的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信