Mining the Hierarchy of Resting-State Brain Networks: Selection of Representative Clusters in a Multiscale Structure

Pierre Bellec
{"title":"Mining the Hierarchy of Resting-State Brain Networks: Selection of Representative Clusters in a Multiscale Structure","authors":"Pierre Bellec","doi":"10.1109/PRNI.2013.23","DOIUrl":null,"url":null,"abstract":"The hierarchical organization of brain networks can be captured by clustering time series using multiple numbers of clusters, or scales, in resting-state functional magnetic resonance imaging. However, the systematic examination of all scales is a tedious task. Here, I propose a method to select a limited number of scales that are representative of the full hierarchy. A bootstrap analysis is first performed to estimate stability matrices, which quantify the reliability of the clustering for every pair of brain regions, over a grid of possible scales. A subset of scales is then selected to approximate linearly all stability matrices with a specified level of accuracy. On real data, the method was found to select a relatively small (~7) number of scales to explain 95% of the energy of 73 scales ranging from 2 to 1100 clusters. The number of selected scales was very consistent across 43 subjects, and the actual scales also showed some good level of agreement. This approach thus provides a principled approach to mine hierarchical brain networks, in the form of a few scales amenable to detailed examination.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

The hierarchical organization of brain networks can be captured by clustering time series using multiple numbers of clusters, or scales, in resting-state functional magnetic resonance imaging. However, the systematic examination of all scales is a tedious task. Here, I propose a method to select a limited number of scales that are representative of the full hierarchy. A bootstrap analysis is first performed to estimate stability matrices, which quantify the reliability of the clustering for every pair of brain regions, over a grid of possible scales. A subset of scales is then selected to approximate linearly all stability matrices with a specified level of accuracy. On real data, the method was found to select a relatively small (~7) number of scales to explain 95% of the energy of 73 scales ranging from 2 to 1100 clusters. The number of selected scales was very consistent across 43 subjects, and the actual scales also showed some good level of agreement. This approach thus provides a principled approach to mine hierarchical brain networks, in the form of a few scales amenable to detailed examination.
静息状态脑网络的层次挖掘:多尺度结构中代表性簇的选择
在静息状态功能磁共振成像中,大脑网络的层次组织可以通过使用多个簇或尺度的聚类时间序列来捕获。然而,对所有尺度进行系统的检查是一项乏味的任务。在这里,我提出了一种方法来选择有限数量的代表整个层次结构的尺度。首先进行自举分析来估计稳定性矩阵,它在可能的尺度网格上量化每对大脑区域的聚类可靠性。然后选择一个尺度子集,以指定的精度水平线性近似所有稳定性矩阵。在实际数据中,该方法选择了相对较少的(~7)个尺度来解释从2到1100个簇的73个尺度的95%的能量。所选量表的数量在43名受试者中非常一致,实际量表也显示出一定程度的一致性。因此,这种方法提供了一种原则性的方法来挖掘分层大脑网络,以一些适合详细检查的尺度的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信