Design Automation by Integrating Generative Adversarial Networks and Topology Optimization

Sangeun Oh, Yongsu Jung, Ikjin Lee, Namwoo Kang
{"title":"Design Automation by Integrating Generative Adversarial Networks and Topology Optimization","authors":"Sangeun Oh, Yongsu Jung, Ikjin Lee, Namwoo Kang","doi":"10.1115/DETC2018-85506","DOIUrl":null,"url":null,"abstract":"Recent advances in deep learning enable machines to learn existing designs by themselves and to create new designs. Generative adversarial networks (GANs) are widely used to generate new images and data by unsupervised learning. Certain limitations exist in applying GANs directly to product designs. It requires a large amount of data, produces uneven output quality, and does not guarantee engineering performance. To solve these problems, this paper proposes a design automation process by combining GANs and topology optimization. The suggested process has been applied to the wheel design of automobiles and has shown that an aesthetically superior and technically meaningful design can be automatically generated without human interventions.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Recent advances in deep learning enable machines to learn existing designs by themselves and to create new designs. Generative adversarial networks (GANs) are widely used to generate new images and data by unsupervised learning. Certain limitations exist in applying GANs directly to product designs. It requires a large amount of data, produces uneven output quality, and does not guarantee engineering performance. To solve these problems, this paper proposes a design automation process by combining GANs and topology optimization. The suggested process has been applied to the wheel design of automobiles and has shown that an aesthetically superior and technically meaningful design can be automatically generated without human interventions.
集成生成对抗网络和拓扑优化的设计自动化
深度学习的最新进展使机器能够自己学习现有的设计并创建新的设计。生成式对抗网络(GANs)被广泛用于通过无监督学习生成新的图像和数据。将gan直接应用于产品设计存在一定的局限性。它需要大量的数据,输出质量参差不齐,不能保证工程性能。为了解决这些问题,本文提出了一种结合gan和拓扑优化的设计自动化过程。所建议的过程已被应用于汽车的车轮设计,并表明,一个美学上优越的和技术上有意义的设计可以自动生成,而无需人为干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信