J. Draisma, Emil Horobet, G. Ottaviani, B. Sturmfels, Rekha R. Thomas
{"title":"The euclidean distance degree","authors":"J. Draisma, Emil Horobet, G. Ottaviani, B. Sturmfels, Rekha R. Thomas","doi":"10.1145/2631948.2631951","DOIUrl":null,"url":null,"abstract":"The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low rank matrices, the Eckart-Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest point maps from the perspective of computational algebraic geometry. The Euclidean distance degree of a variety is the number of critical points of the squared distance to a generic point outside the variety. Focusing on varieties seen in applications, we present numerous tools for computation.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631948.2631951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low rank matrices, the Eckart-Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest point maps from the perspective of computational algebraic geometry. The Euclidean distance degree of a variety is the number of critical points of the squared distance to a generic point outside the variety. Focusing on varieties seen in applications, we present numerous tools for computation.