Scaling models for microfabricated in vivo neural recording technologies

J. Scholvin, C. Fonstad, E. Boyden
{"title":"Scaling models for microfabricated in vivo neural recording technologies","authors":"J. Scholvin, C. Fonstad, E. Boyden","doi":"10.1109/NER.2017.8008321","DOIUrl":null,"url":null,"abstract":"Microfabrication technology can enable extracellular neural recording electrodes with unprecedented wiring density, and the ability to benefit from continued CMOS technology scaling. A neural recording electrode consists of recording sites that sense electrical activity inside the brain, and wiring that routes these signals to neural amplifiers outside the brain. We here introduce a scalable circuit model for recording sites and signal routing, valid for different amplifier integration approaches. We define noise and cross-talk requirements, and analyze how future CMOS technology scaling will drive the ability to record from increasingly large number of sites in the mammalian brain. This analysis provides an important step in understanding how advances of MEMS and CMOS fabrication can be utilized in large-scale recording efforts of many thousands to possibly millions of neurons.","PeriodicalId":142883,"journal":{"name":"2017 8th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2017.8008321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Microfabrication technology can enable extracellular neural recording electrodes with unprecedented wiring density, and the ability to benefit from continued CMOS technology scaling. A neural recording electrode consists of recording sites that sense electrical activity inside the brain, and wiring that routes these signals to neural amplifiers outside the brain. We here introduce a scalable circuit model for recording sites and signal routing, valid for different amplifier integration approaches. We define noise and cross-talk requirements, and analyze how future CMOS technology scaling will drive the ability to record from increasingly large number of sites in the mammalian brain. This analysis provides an important step in understanding how advances of MEMS and CMOS fabrication can be utilized in large-scale recording efforts of many thousands to possibly millions of neurons.
微加工体内神经记录技术的缩放模型
微加工技术可以使细胞外神经记录电极具有前所未有的布线密度,并且能够从持续的CMOS技术扩展中受益。神经记录电极由感知大脑内部电活动的记录位点和将这些信号传递到大脑外部的神经放大器的线路组成。我们在这里介绍了一个可扩展的电路模型,用于记录站点和信号路由,适用于不同的放大器集成方法。我们定义了噪声和串扰要求,并分析了未来CMOS技术的扩展将如何推动从哺乳动物大脑中越来越多的位置记录的能力。该分析为理解MEMS和CMOS制造的进步如何用于数千甚至数百万神经元的大规模记录工作提供了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信